organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S,5S)-2-(2-Bromo­phen­yl)-1,3-dioxolane-4,5-dicarboxamide

aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 16 March 2009; accepted 18 March 2009; online 25 March 2009)

The asymmetric unit of the title compound, C11H11BrN2O4, contains two crystallographically independent mol­ecules in which the bromo­phenyl rings are oriented at dihedral angles of 39.28 (3)°. The dioxolane rings adopt envelope conformations. Intra­molecular N—H⋯O hydrogen bonds result in the formation of four five-membered rings, having planar and envelope conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into chains along the b axis, forming R22(8) ring motifs.

Related literature

For the use of similar compounds in the synthesis of platinum based anti-tumour agents and in organic syntheses, see: Kim et al. (1994[Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471-1485.]); Pandey et al. (1997[Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11BrN2O4

  • Mr = 315.12

  • Monoclinic, P 21

  • a = 9.4150 (19) Å

  • b = 14.458 (3) Å

  • c = 9.6170 (19) Å

  • β = 111.14 (3)°

  • V = 1221.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.552, Tmax = 0.729

  • 4504 measured reflections

  • 4256 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.061

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.181

  • S = 1.00

  • 4256 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.82 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1758 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.86 2.25 2.657 (12) 109
N2—H2B⋯O2 0.86 2.27 2.660 (12) 107
N3—H3B⋯O8i 0.86 2.28 3.123 (14) 167
N3—H3C⋯O5 0.86 2.32 2.684 (14) 106
N4—H4B⋯O7ii 0.86 2.05 2.876 (11) 160
N4—H4C⋯O6 0.86 2.26 2.672 (11) 110
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Antitumor platinum drug is one kind of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the syntheses of platinum complexes with antitumor activity (Kim et al., 1994), and are also important intermediates in organic syntheses (Pandey et al., 1997). As part of our studies on the syntheses and characterizations of these compounds, we have synthesized the title compound and reported herein its crystal structure.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and A' (C12-C17) are, of course, planar and they are oriented at a dihedral angle of A/A' = 39.28 (3)°. Rings B (O1/O2/C7-C9) and B' (O5/O6/C18-C20) adopt envelope conformations with C7 and C18 atoms displaced by 0.503 (3) and -0.589 (3) Å from the planes of the other ring atoms, rspectively. The intramolecular N-H···O hydrogen bonds (Table 1) result in the formations of four five-membered rings: C (O1/N1/C9/C10/H1B), D (O2/N2/C8/C11/H2B) and C' (O5/N3/C19/C21/H3C), D' (O6/N4/C20/C22/H4C). Ring D is planar, while rings C, C' and D' have envelope conformations with atoms O1, O5 and O6 displaced by 0.223 (3), -0.530 (3) and -0.304 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains along the b-axis, forming R22(8) ring motifs (Fig. 2) (Bernstein et al., 1995). in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Kim et al. (1994); Pandey et al. (1997). For bond-length data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, 2-bromobenzaldehyde (300 mg, 1.62 mmol), (2S,3S)-diethyltartrate (434 mg, 2.11 mmol) and cyclohexane (10 ml) were placed in a round-bottomed flask, and 4-methylbenzenesulfonic acid (30 mg) was added. The flask was fitted with a water-distributor. The mixture was heated under reflux for 3 h. The reaction mixture was cooled to room temperature, and then transferred into a separatory funnel, washed with water (200 ml) and extracted with acetate (200 ml). The organic phase was distilled under pressure, and the residual was dissolved in anhydrous ethanol (50 ml). Then, a current of dry ammonia was passed through the reaction mixture at room temperature for about 4 h. The reaction mixture was then added dropwise to a vigorously stirred water (600 ml). The resulting colorless precipitate was obtained by filtration and dried in vacuo (Kim et al., 1994). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution after two weeks.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(4S,5S)-2-(2-Bromophenyl)-1,3-dioxolane-4,5-dicarboxamide top
Crystal data top
C11H11BrN2O4F(000) = 632
Mr = 315.12Dx = 1.714 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.4150 (19) Åθ = 10–13°
b = 14.458 (3) ŵ = 3.38 mm1
c = 9.6170 (19) ÅT = 294 K
β = 111.14 (3)°Block, colorless
V = 1221.0 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2669 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1017
Tmin = 0.552, Tmax = 0.729l = 1111
4504 measured reflections3 standard reflections every 120 min
4256 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.1P)2 + 1.54P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4256 reflectionsΔρmax = 0.54 e Å3
325 parametersΔρmin = 0.82 e Å3
0 restraintsAbsolute structure: Flack (1983), 1758 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
C11H11BrN2O4V = 1221.0 (5) Å3
Mr = 315.12Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.4150 (19) ŵ = 3.38 mm1
b = 14.458 (3) ÅT = 294 K
c = 9.6170 (19) Å0.20 × 0.10 × 0.10 mm
β = 111.14 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2669 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.061
Tmin = 0.552, Tmax = 0.7293 standard reflections every 120 min
4504 measured reflections intensity decay: 1%
4256 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.181Δρmax = 0.54 e Å3
S = 1.00Δρmin = 0.82 e Å3
4256 reflectionsAbsolute structure: Flack (1983), 1758 Friedel pairs
325 parametersAbsolute structure parameter: 0.00 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02596 (15)0.99788 (7)0.97303 (14)0.0608 (5)
Br20.51991 (15)0.59675 (7)0.96846 (14)0.0584 (4)
O10.2071 (7)0.8476 (4)1.2310 (7)0.0342 (15)
O20.3547 (9)0.7557 (5)1.1503 (8)0.045 (2)
O30.5492 (8)0.9264 (5)1.5118 (7)0.0425 (17)
O40.5063 (11)0.6732 (6)1.5238 (9)0.072 (3)
O50.1786 (8)0.3598 (6)0.8478 (8)0.0402 (19)
O60.3262 (6)0.4292 (4)0.7424 (6)0.0289 (14)
O70.0743 (8)0.2608 (5)0.5162 (8)0.051 (2)
O80.0128 (9)0.5151 (6)0.4748 (10)0.077 (3)
N10.3494 (10)1.0032 (7)1.3501 (9)0.054 (2)
H1A0.38721.05691.37980.065*
H1B0.26180.99831.27980.065*
N20.3894 (12)0.6010 (7)1.3088 (9)0.065 (3)
H2A0.39360.54871.35270.078*
H2B0.34800.60461.21330.078*
N30.1299 (12)0.2007 (8)0.6938 (12)0.083 (4)
H3B0.11230.14610.65570.100*
H3C0.20750.21030.77370.100*
N40.2056 (10)0.5835 (6)0.5937 (10)0.058 (3)
H4B0.18040.63540.54750.070*
H4C0.29460.57680.66090.070*
C10.1253 (13)0.8539 (9)0.7843 (12)0.054 (3)
H1C0.19730.89940.74060.065*
C20.1452 (15)0.7645 (9)0.7283 (14)0.063 (3)
H2C0.23350.74900.64910.076*
C30.0347 (14)0.6989 (9)0.7897 (12)0.060 (3)
H3A0.04770.63970.74920.072*
C40.0952 (12)0.7193 (8)0.9104 (12)0.045 (3)
H4A0.16850.67380.95010.055*
C50.1177 (10)0.8071 (7)0.9733 (10)0.032 (2)
C60.0023 (11)0.8736 (7)0.9049 (11)0.041 (2)
C70.2506 (12)0.8300 (7)1.1051 (11)0.042 (3)
H7A0.30170.88461.08460.051*
C80.4385 (13)0.7664 (7)1.3091 (12)0.043 (3)
H8A0.54060.79131.32840.051*
C90.3383 (11)0.8363 (7)1.3586 (10)0.033 (2)
H9A0.31100.80911.43890.040*
C100.4257 (11)0.9281 (7)1.4125 (10)0.035 (2)
C110.4458 (12)0.6747 (7)1.3868 (11)0.040 (2)
C120.6632 (12)0.4664 (8)1.1863 (12)0.047 (3)
H12A0.73770.51191.21950.057*
C130.6768 (12)0.3799 (8)1.2638 (11)0.047 (3)
H13A0.76290.36791.34750.056*
C140.5657 (12)0.3166 (9)1.2157 (12)0.050 (3)
H14A0.57210.26191.26870.060*
C150.4429 (12)0.3328 (7)1.0882 (11)0.042 (2)
H15A0.36870.28721.05420.051*
C160.4242 (11)0.4149 (7)1.0072 (10)0.038 (2)
C170.5378 (11)0.4786 (7)1.0634 (10)0.038 (2)
C180.2854 (10)0.4319 (7)0.8716 (10)0.035 (2)
H18A0.23920.49150.87890.042*
C190.0858 (10)0.3643 (7)0.6949 (11)0.033 (2)
H19A0.00530.40070.68420.040*
C200.1849 (12)0.4189 (7)0.6234 (10)0.041 (3)
H20A0.19840.38240.54330.049*
C210.0373 (12)0.2699 (7)0.6293 (12)0.041 (3)
C220.1035 (12)0.5114 (7)0.5599 (10)0.039 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0828 (10)0.0392 (9)0.0483 (8)0.0150 (7)0.0090 (7)0.0055 (7)
Br20.0742 (9)0.0320 (8)0.0488 (8)0.0102 (7)0.0022 (7)0.0053 (7)
O10.041 (3)0.031 (4)0.028 (4)0.001 (3)0.009 (3)0.002 (3)
O20.070 (5)0.033 (5)0.028 (4)0.010 (4)0.011 (4)0.001 (3)
O30.061 (4)0.026 (4)0.031 (4)0.005 (3)0.006 (3)0.001 (3)
O40.113 (7)0.032 (5)0.035 (4)0.013 (4)0.016 (4)0.006 (4)
O50.048 (4)0.043 (5)0.023 (4)0.007 (4)0.005 (3)0.000 (3)
O60.034 (3)0.031 (4)0.014 (3)0.007 (3)0.001 (2)0.000 (3)
O70.060 (4)0.034 (5)0.032 (4)0.001 (3)0.016 (3)0.005 (3)
O80.073 (5)0.043 (6)0.068 (6)0.003 (4)0.031 (5)0.019 (4)
N10.063 (5)0.030 (5)0.045 (5)0.002 (5)0.010 (4)0.011 (5)
N20.121 (8)0.030 (5)0.024 (5)0.022 (6)0.001 (5)0.002 (5)
N30.091 (7)0.033 (6)0.071 (7)0.008 (6)0.038 (6)0.003 (6)
N40.054 (5)0.042 (7)0.056 (6)0.003 (5)0.007 (4)0.023 (5)
C10.060 (5)0.062 (6)0.035 (5)0.007 (5)0.012 (4)0.007 (5)
C20.071 (6)0.059 (6)0.046 (6)0.016 (5)0.006 (5)0.006 (5)
C30.086 (6)0.048 (6)0.040 (5)0.012 (5)0.015 (4)0.010 (5)
C40.062 (5)0.032 (5)0.037 (5)0.003 (4)0.012 (4)0.001 (4)
C50.034 (4)0.033 (5)0.029 (4)0.007 (4)0.012 (3)0.006 (4)
C60.054 (5)0.038 (5)0.030 (5)0.006 (4)0.015 (4)0.008 (4)
C70.067 (7)0.018 (6)0.038 (6)0.004 (5)0.016 (5)0.001 (5)
C80.064 (7)0.015 (6)0.033 (6)0.001 (5)0.002 (5)0.003 (5)
C90.052 (6)0.027 (6)0.022 (5)0.004 (4)0.015 (4)0.007 (4)
C100.052 (6)0.033 (7)0.019 (5)0.004 (5)0.010 (4)0.002 (4)
C110.058 (6)0.024 (6)0.025 (5)0.007 (5)0.000 (4)0.005 (4)
C120.053 (5)0.044 (6)0.040 (5)0.002 (4)0.009 (4)0.003 (4)
C130.052 (5)0.049 (6)0.030 (5)0.008 (4)0.004 (4)0.001 (4)
C140.058 (5)0.050 (6)0.034 (5)0.004 (4)0.008 (4)0.007 (4)
C150.062 (5)0.025 (5)0.031 (5)0.001 (4)0.007 (4)0.003 (4)
C160.058 (5)0.027 (5)0.023 (4)0.004 (4)0.009 (4)0.003 (4)
C170.055 (5)0.021 (5)0.031 (5)0.003 (4)0.006 (4)0.004 (4)
C180.049 (5)0.031 (6)0.022 (5)0.006 (5)0.009 (4)0.003 (4)
C190.033 (5)0.025 (6)0.036 (6)0.005 (4)0.008 (4)0.007 (5)
C200.071 (7)0.021 (6)0.024 (5)0.020 (5)0.009 (5)0.000 (4)
C210.048 (6)0.028 (6)0.038 (6)0.001 (5)0.003 (5)0.007 (5)
C220.059 (6)0.030 (7)0.019 (5)0.003 (5)0.002 (4)0.005 (4)
Geometric parameters (Å, º) top
Br1—C61.897 (11)C2—H2C0.9300
Br2—C171.915 (10)C3—C41.381 (15)
O1—C91.402 (11)C3—H3A0.9300
O1—C71.434 (11)C4—C51.389 (15)
O2—C71.414 (12)C4—H4A0.9300
O2—C81.453 (12)C5—C61.422 (13)
O3—C101.210 (11)C5—C71.462 (14)
O4—C111.232 (12)C7—H7A0.9800
O5—C181.409 (11)C8—C111.511 (14)
O5—C191.416 (11)C8—C91.568 (14)
O6—C201.416 (11)C8—H8A0.9800
O6—C181.427 (11)C9—C101.549 (14)
O7—C211.217 (11)C9—H9A0.9800
O8—C221.107 (11)C12—C171.348 (13)
N1—C101.321 (12)C12—C131.437 (16)
N1—H1A0.8600C12—H12A0.9300
N1—H1B0.8600C13—C141.341 (15)
N2—C111.301 (13)C13—H13A0.9300
N2—H2A0.8600C14—C151.369 (14)
N2—H2B0.8600C14—H14A0.9300
N3—C211.324 (13)C15—C161.395 (14)
N3—H3B0.8600C15—H15A0.9300
N3—H3C0.8600C16—C171.367 (14)
N4—C221.375 (13)C16—C181.497 (12)
N4—H4B0.8600C18—H18A0.9800
N4—H4C0.8600C19—C211.504 (14)
C1—C61.366 (14)C19—C201.559 (15)
C1—C21.386 (18)C19—H19A0.9800
C1—H1C0.9300C20—C221.552 (13)
C2—C31.374 (17)C20—H20A0.9800
C9—O1—C7106.8 (7)C10—C9—H9A109.8
C7—O2—C8107.2 (8)C8—C9—H9A109.8
C18—O5—C19105.7 (7)O3—C10—N1125.8 (9)
C20—O6—C18103.7 (7)O3—C10—C9119.4 (8)
C10—N1—H1A120.0N1—C10—C9114.6 (8)
C10—N1—H1B120.0O4—C11—N2122.5 (10)
H1A—N1—H1B120.0O4—C11—C8117.7 (9)
C11—N2—H2A120.0N2—C11—C8119.8 (9)
C11—N2—H2B120.0C17—C12—C13117.1 (10)
H2A—N2—H2B120.0C17—C12—H12A121.5
C21—N3—H3B120.0C13—C12—H12A121.5
C21—N3—H3C120.0C14—C13—C12120.2 (10)
H3B—N3—H3C120.0C14—C13—H13A119.9
C22—N4—H4B120.0C12—C13—H13A119.9
C22—N4—H4C120.0C13—C14—C15119.6 (11)
H4B—N4—H4C120.0C13—C14—H14A120.2
C6—C1—C2118.7 (12)C15—C14—H14A120.2
C6—C1—H1C120.7C14—C15—C16122.8 (11)
C2—C1—H1C120.7C14—C15—H15A118.6
C3—C2—C1120.1 (12)C16—C15—H15A118.6
C3—C2—H2C120.0C17—C16—C15115.4 (9)
C1—C2—H2C120.0C17—C16—C18123.1 (9)
C2—C3—C4121.2 (12)C15—C16—C18121.4 (9)
C2—C3—H3A119.4C12—C17—C16124.8 (10)
C4—C3—H3A119.4C12—C17—Br2115.7 (8)
C3—C4—C5120.7 (11)C16—C17—Br2119.4 (7)
C3—C4—H4A119.6O5—C18—O6103.9 (7)
C5—C4—H4A119.6O5—C18—C16111.5 (8)
C4—C5—C6116.5 (9)O6—C18—C16109.3 (8)
C4—C5—C7122.2 (9)O5—C18—H18A110.7
C6—C5—C7121.3 (9)O6—C18—H18A110.7
C1—C6—C5122.8 (11)C16—C18—H18A110.7
C1—C6—Br1116.7 (8)O5—C19—C21112.0 (9)
C5—C6—Br1120.4 (8)O5—C19—C20103.8 (7)
O2—C7—O1104.7 (8)C21—C19—C20114.5 (9)
O2—C7—C5112.1 (8)O5—C19—H19A108.8
O1—C7—C5110.9 (8)C21—C19—H19A108.8
O2—C7—H7A109.7C20—C19—H19A108.8
O1—C7—H7A109.7O6—C20—C22114.5 (8)
C5—C7—H7A109.7O6—C20—C19103.5 (7)
O2—C8—C11109.7 (8)C22—C20—C19108.8 (8)
O2—C8—C9103.3 (8)O6—C20—H20A110.0
C11—C8—C9109.9 (9)C22—C20—H20A110.0
O2—C8—H8A111.2C19—C20—H20A110.0
C11—C8—H8A111.2O7—C21—N3123.2 (10)
C9—C8—H8A111.2O7—C21—C19120.4 (9)
O1—C9—C10112.7 (8)N3—C21—C19116.1 (9)
O1—C9—C8104.3 (7)O8—C22—N4124.0 (10)
C10—C9—C8110.4 (8)O8—C22—C20123.2 (10)
O1—C9—H9A109.8N4—C22—C20110.9 (8)
C6—C1—C2—C32.9 (18)C17—C12—C13—C141.8 (16)
C1—C2—C3—C42.1 (19)C12—C13—C14—C153.3 (17)
C2—C3—C4—C50.0 (19)C13—C14—C15—C162.5 (18)
C3—C4—C5—C61.2 (15)C14—C15—C16—C170.3 (16)
C3—C4—C5—C7177.3 (10)C14—C15—C16—C18177.5 (10)
C2—C1—C6—C51.7 (16)C13—C12—C17—C160.5 (17)
C2—C1—C6—Br1178.3 (9)C13—C12—C17—Br2177.4 (8)
C4—C5—C6—C10.4 (15)C15—C16—C17—C121.2 (16)
C7—C5—C6—C1178.2 (10)C18—C16—C17—C12179.0 (10)
C4—C5—C6—Br1176.1 (8)C15—C16—C17—Br2176.6 (7)
C7—C5—C6—Br15.3 (13)C18—C16—C17—Br21.2 (14)
C8—O2—C7—O133.6 (10)C19—O5—C18—O640.6 (9)
C8—O2—C7—C5153.9 (9)C19—O5—C18—C16158.2 (8)
C9—O1—C7—O238.4 (9)C20—O6—C18—O544.5 (8)
C9—O1—C7—C5159.5 (8)C20—O6—C18—C16163.6 (8)
C4—C5—C7—O24.6 (14)C17—C16—C18—O5173.1 (9)
C6—C5—C7—O2176.9 (8)C15—C16—C18—O54.5 (14)
C4—C5—C7—O1111.9 (10)C17—C16—C18—O672.7 (12)
C6—C5—C7—O166.6 (11)C15—C16—C18—O6109.7 (10)
C7—O2—C8—C11133.8 (9)C18—O5—C19—C21144.8 (9)
C7—O2—C8—C916.6 (10)C18—O5—C19—C2020.7 (10)
C7—O1—C9—C1092.9 (9)C18—O6—C20—C2288.1 (9)
C7—O1—C9—C826.9 (9)C18—O6—C20—C1930.1 (9)
O2—C8—C9—O16.4 (10)O5—C19—C20—O66.1 (9)
C11—C8—C9—O1110.6 (8)C21—C19—C20—O6116.3 (8)
O2—C8—C9—C10114.9 (9)O5—C19—C20—C22116.0 (8)
C11—C8—C9—C10128.1 (9)C21—C19—C20—C22121.6 (9)
O1—C9—C10—O3172.2 (8)O5—C19—C21—O7158.6 (10)
C8—C9—C10—O356.0 (11)C20—C19—C21—O783.5 (13)
O1—C9—C10—N112.7 (12)O5—C19—C21—N327.2 (14)
C8—C9—C10—N1128.9 (9)C20—C19—C21—N390.7 (13)
O2—C8—C11—O4176.2 (9)O6—C20—C22—O8173.5 (11)
C9—C8—C11—O463.3 (13)C19—C20—C22—O858.3 (14)
O2—C8—C11—N23.9 (15)O6—C20—C22—N421.5 (12)
C9—C8—C11—N2116.9 (11)C19—C20—C22—N4136.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.252.657 (12)109
N2—H2B···O20.862.272.660 (12)107
N3—H3B···O8i0.862.283.123 (14)167
N3—H3C···O50.862.322.684 (14)106
N4—H4B···O7ii0.862.052.876 (11)160
N4—H4C···O60.862.262.672 (11)110
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H11BrN2O4
Mr315.12
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)9.4150 (19), 14.458 (3), 9.6170 (19)
β (°) 111.14 (3)
V3)1221.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.552, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
4504, 4256, 2669
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.181, 1.00
No. of reflections4256
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.82
Absolute structureFlack (1983), 1758 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.252.657 (12)109
N2—H2B···O20.862.272.660 (12)107
N3—H3B···O8i0.862.283.123 (14)167
N3—H3C···O50.862.322.684 (14)106
N4—H4B···O7ii0.862.052.876 (11)160
N4—H4C···O60.862.262.672 (11)110
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. K., Kim, G., Gam, J. S., Cho, Y. B., Kim, H. T., Tai, J. H., Kim, K. H., Hong, W. S. & Park, J. G. (1994). J. Med. Chem. 37, 1471–1485.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds