organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl-5-nitro­aniline

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fzcpu@163.com

(Received 16 March 2009; accepted 17 March 2009; online 25 March 2009)

The mol­ecule of the title compound, C8H10N2O2, is nearly planar [maximum deviation of 0.163 (3) Å for one of the O atoms of the NO2 group]. In the crystal structure, weak inter­molecular N—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into chains, forming R22(10) ring motifs.

Related literature

For a related structure, see: Corwin (1955[Corwin, H. (1955). J. Org. Chem. 20, 1026-1029.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2

  • Mr = 166.18

  • Monoclinic, C 2/c

  • a = 23.037 (5) Å

  • b = 3.9540 (8) Å

  • c = 18.393 (4) Å

  • β = 104.51 (3)°

  • V = 1621.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.980, Tmax = 0.990

  • 2937 measured reflections

  • 1474 independent reflections

  • 906 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.153

  • S = 1.01

  • 1474 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N2i 0.86 2.62 3.423 (3) 156
C7—H7A⋯O1ii 0.93 2.60 3.417 (4) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Some derivatives of aniline are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C3-C8) is, of course, planar. Atoms C1, C2, N1, N2, O1 and O2 are -0.067 (3), -0.028 (2), -0.035 (3), -0.055 (3), 0.054 (3) and -0.163 (3) Å away from the ring plane of A, respectively.

In the crystal structure, weak intermolecular N-H···N and C-H···O hydrogen bonds (Table 1) link the molecules into chains, forming R22(10) ring motifs (Fig. 2) (Bernstein et al., 1995). in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Corwin (1955). For bond-length data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, 2-ethylaniline (12.1 g) was dissolved in concentrated sulfuric acid (50 ml). The mixture was cooled to 273 K, and nitric acid (6.37 ml) was added in small portions. The mixture was stirred at 295 K for 0.5 h. Then, it was poured into a large volume of ice, used natrium hydroxydatum to neutralize excess acid, filtered, and dried. The compound was crystallized from cyclohexane (Corwin, 1955). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Ethyl-5-nitroaniline top
Crystal data top
C8H10N2O2F(000) = 704
Mr = 166.18Dx = 1.361 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 23.037 (5) Åθ = 10–13°
b = 3.9540 (8) ŵ = 0.10 mm1
c = 18.393 (4) ÅT = 298 K
β = 104.51 (3)°Block, colorless
V = 1621.9 (6) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
906 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 2727
Absorption correction: ψ scan
(North et al., 1968)
k = 04
Tmin = 0.980, Tmax = 0.990l = 2222
2937 measured reflections3 standard reflections every 120 min
1474 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + P]
where P = (Fo2 + 2Fc2)/3
1474 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C8H10N2O2V = 1621.9 (6) Å3
Mr = 166.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.037 (5) ŵ = 0.10 mm1
b = 3.9540 (8) ÅT = 298 K
c = 18.393 (4) Å0.20 × 0.10 × 0.10 mm
β = 104.51 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
906 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.980, Tmax = 0.9903 standard reflections every 120 min
2937 measured reflections intensity decay: 1%
1474 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
1474 reflectionsΔρmin = 0.21 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18034 (10)0.6924 (7)0.09151 (11)0.0931 (9)
O20.08462 (10)0.6656 (7)0.12713 (11)0.0921 (8)
N10.13189 (12)0.6134 (7)0.08113 (12)0.0598 (6)
N20.23320 (8)0.2602 (7)0.17155 (11)0.0643 (8)
H2A0.26630.33900.16510.077*
H2B0.23220.17040.21380.077*
C10.06424 (11)0.1027 (8)0.20919 (14)0.0592 (8)
H1A0.06870.19490.25860.089*
H1B0.04790.27210.17230.089*
H1C0.03770.08810.20250.089*
C20.12500 (10)0.0091 (7)0.19996 (12)0.0489 (7)
H2C0.14130.17380.23880.059*
H2D0.15150.18520.20870.059*
C30.12627 (10)0.1609 (6)0.12529 (12)0.0406 (6)
C40.07514 (10)0.1952 (7)0.06693 (13)0.0458 (6)
H4A0.03880.11740.07380.055*
C50.07620 (11)0.3397 (7)0.00061 (13)0.0479 (7)
H5A0.04130.36080.03890.058*
C60.13008 (10)0.4519 (7)0.01007 (12)0.0445 (6)
C70.18252 (10)0.4228 (7)0.04537 (13)0.0476 (7)
H7A0.21850.49930.03720.057*
C80.18102 (10)0.2780 (7)0.11353 (12)0.0442 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0812 (15)0.132 (2)0.0759 (14)0.0154 (16)0.0390 (12)0.0189 (15)
O20.0889 (15)0.121 (2)0.0588 (12)0.0001 (15)0.0045 (11)0.0277 (14)
N10.0728 (16)0.0621 (16)0.0473 (12)0.0051 (14)0.0201 (12)0.0025 (12)
N20.0382 (11)0.101 (2)0.0502 (12)0.0073 (13)0.0052 (9)0.0046 (14)
C10.0702 (18)0.0533 (18)0.0597 (16)0.0030 (15)0.0266 (13)0.0046 (14)
C20.0550 (15)0.0431 (16)0.0493 (14)0.0009 (12)0.0142 (12)0.0057 (12)
C30.0433 (13)0.0346 (14)0.0441 (13)0.0014 (11)0.0115 (10)0.0080 (11)
C40.0402 (13)0.0443 (16)0.0529 (14)0.0059 (12)0.0117 (11)0.0044 (13)
C50.0455 (14)0.0474 (16)0.0471 (14)0.0007 (13)0.0044 (11)0.0016 (13)
C60.0526 (14)0.0411 (15)0.0415 (13)0.0020 (12)0.0148 (11)0.0082 (12)
C70.0438 (13)0.0515 (17)0.0519 (14)0.0063 (13)0.0202 (11)0.0094 (13)
C80.0394 (13)0.0479 (16)0.0448 (13)0.0022 (12)0.0097 (10)0.0105 (12)
Geometric parameters (Å, º) top
O1—N11.219 (3)C2—H2C0.9700
O2—N11.218 (3)C2—H2D0.9700
N1—C61.465 (3)C3—C41.387 (3)
N2—C81.395 (3)C3—C81.410 (3)
N2—H2A0.8600C4—C51.373 (3)
N2—H2B0.8600C4—H4A0.9300
C1—C21.517 (3)C5—C61.370 (3)
C1—H1A0.9600C5—H5A0.9300
C1—H1B0.9600C6—C71.377 (3)
C1—H1C0.9600C7—C81.387 (3)
C2—C31.506 (3)C7—H7A0.9300
O2—N1—O1122.8 (2)C4—C3—C8117.9 (2)
O2—N1—C6118.3 (2)C4—C3—C2122.5 (2)
O1—N1—C6118.9 (2)C8—C3—C2119.56 (19)
C8—N2—H2A120.0C5—C4—C3122.5 (2)
C8—N2—H2B120.0C5—C4—H4A118.8
H2A—N2—H2B120.0C3—C4—H4A118.8
C2—C1—H1A109.5C6—C5—C4118.2 (2)
C2—C1—H1B109.5C6—C5—H5A120.9
H1A—C1—H1B109.5C4—C5—H5A120.9
C2—C1—H1C109.5C5—C6—C7122.3 (2)
H1A—C1—H1C109.5C5—C6—N1118.9 (2)
H1B—C1—H1C109.5C7—C6—N1118.8 (2)
C3—C2—C1116.59 (19)C6—C7—C8119.2 (2)
C3—C2—H2C108.1C6—C7—H7A120.4
C1—C2—H2C108.1C8—C7—H7A120.4
C3—C2—H2D108.1C7—C8—N2120.0 (2)
C1—C2—H2D108.1C7—C8—C3120.0 (2)
H2C—C2—H2D107.3N2—C8—C3119.9 (2)
C1—C2—C3—C40.7 (4)O1—N1—C6—C75.9 (4)
C1—C2—C3—C8178.4 (2)C5—C6—C7—C80.6 (4)
C8—C3—C4—C50.5 (4)N1—C6—C7—C8178.4 (2)
C2—C3—C4—C5178.7 (3)C6—C7—C8—N2177.1 (2)
C3—C4—C5—C60.3 (4)C6—C7—C8—C30.4 (4)
C4—C5—C6—C70.3 (4)C4—C3—C8—C70.1 (3)
C4—C5—C6—N1178.7 (2)C2—C3—C8—C7179.0 (2)
O2—N1—C6—C55.6 (4)C4—C3—C8—N2177.6 (2)
O1—N1—C6—C5175.1 (3)C2—C3—C8—N21.5 (4)
O2—N1—C6—C7173.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N2i0.862.623.423 (3)156
C7—H7A···O1ii0.932.603.417 (4)147
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC8H10N2O2
Mr166.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)23.037 (5), 3.9540 (8), 18.393 (4)
β (°) 104.51 (3)
V3)1621.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2937, 1474, 906
Rint0.056
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.153, 1.01
No. of reflections1474
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N2i0.862.623.423 (3)156
C7—H7A···O1ii0.932.603.417 (4)147
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCorwin, H. (1955). J. Org. Chem. 20, 1026–1029.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds