metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m453-m454

(SP-4-4)-[Hydrogen N-({2-[(2S)-1-benzyl­pyrrolidine-2-carboxamido]phen­yl}(phen­yl)methyl­ene)-L-glutamato(2−)]nickel(II)

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wrzjd@126.com

(Received 18 March 2009; accepted 24 March 2009; online 28 March 2009)

In the mol­ecule of the title complex, [Ni(C30H29N3O5)], the Ni atom is coordinated in a distorted square-planar geometry by three N and one O atoms. The aromatic rings are oriented at dihedral angles of 29.01 (3), 79.73 (3) and 83.37 (3)°. The remaining rings adopt envelope conformations with the C and N atoms at the flap positions. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along the b axis. There is also a weak C—H⋯π inter­action.

Related literature

For the stoichiometric asymmetric synthesis of amino acids based on use of the chiral auxiliary (S)-2-[N-(N′-benzyl­prol­yl)amino]benzophenone, see: Belokon (1992[Belokon, Y. N. (1992). Pure Appl. Chem. 64, 1917-1924.]). For non-proteinogenic amino acids synthesized by this method, see: Belokon et al. (1985[Belokon, Y. N., Bulychev, A. G., Vitt, S. V., Struchkov, Y. T., Batsanov, A. S., Timofeeva, T. V., Tsyryapkin, V. A., Ryzhov, M. G., Lysova, L. A., Bakhmutov, V. I. & Belikov, V. M. (1985). J. Am. Chem. Soc. 107, 4252-4259.], 1986[Belokon, Y. N., Bulychev, A. G., Ryzhov, M. G., Vitt, S. V., Batsanov, A. S., Struchkov, Y. T., Bakhmutov, V. I. & Belikov, V. M. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 1865-1872.], 1990[Belokon, Y. N., Sagyan, A. S., Djamgaryan, S. M., Bakhmutov, V. I., Vitt, S. V., Batsanov, A. S., Struchkov, Y. T. & Belikov, V. M. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 2301-2310.]); Belokon, Bakhmutov et al. (1988[Belokon, Y. N., Bakhmutov, V. I., Chernoglazova, N. I., Kochetkov, K. A., Vitt, S. V., Garbalinskaya, N. S. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 305-312.]); Belokon, Bulychev et al. (1988[Belokon, Y. N., Bulychev, A. G., Pavlov, V. A., Fedorova, E. B., Tsyryapkin, V. A., Bakhmutov, V. A. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2075-2083.]); Belokon, Sagyan et al. (1988[Belokon, Y. N., Sagyan, A. S., Djamgaryan, S. M., Bakhmutov, V. I. & Belikov, V. M. (1988). Tetrahedron, 44, 5507-5514.]); Soloshonok et al. (1992[Soloshonok, V. A., Belokon, Y. N., Kuzmina, N. A., Maleev, V. I., Svistunova, N. Y., Solodenko, V. A. & Kukhar, V. P. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1525-1529.], 2001[Soloshonok, V. A., Tang, X. J., Hruby, V. J. & Meervelt, L. V. (2001). Org. Lett. 3, 341-343.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C30H29N3O5)]

  • Mr = 570.27

  • Orthorhombic, P 21 21 21

  • a = 9.4570 (19) Å

  • b = 14.293 (3) Å

  • c = 20.251 (4) Å

  • V = 2737.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Nonius–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.806, Tmax = 0.864

  • 5494 measured reflections

  • 4976 independent reflections

  • 4168 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.00

  • 4976 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2145 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Selected geometric parameters (Å, °)

Ni—N2 1.843 (4)
Ni—O5 1.850 (3)
Ni—N3 1.859 (4)
Ni—N1 1.931 (4)
N2—Ni—O5 174.69 (17)
N2—Ni—N3 95.59 (16)
O5—Ni—N3 86.41 (15)
N2—Ni—N1 87.02 (16)
O5—Ni—N1 91.78 (15)
N3—Ni—N1 170.73 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O4i 0.82 1.86 2.680 (6) 174
C2—H2ACg1ii 0.93 2.93 3.722 (5) 144
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C13–C18 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

The method of stoichiometric asymmetric synthesis of amino acids based on use of the chiral auxiliary (S)-2-[N-(N'-benzylprolyl)amino]benzophenone (BPB) developed by Belokon's group (Belokon, 1992) was one of the most versatile and general methods for amino acids preparations. With inexpensive reagents and simple experimental procedures, many kinds of tailor-made non-proteinogenic amino acids were synthesized by this method (Belokon et al., 1985; Belokon et al., 1986; Belokon, Bakhmutov et al., 1988; Belokon, Bulychev et al., 1988; Belokon, Sagyan et al., 1988; Belokon et al., 1990; Soloshonok et al., 1992; Soloshonok et al., 2001). Here we applied this method for the synthesis of gamma-L-glutamyl dipeptides via a Ni complex of glutamic acid Schiff base (the title complex), which has been employed as co-protection of the alpha-amino and alpha-carboxyl group of L-glutamic acid. Then, the title complex reacted with L-amino acids to give Ni complexes of gamma-L-glutamyl dipeptides Schiff base. Finally, after decomposition of these complexes, gamma-L-glutamyl dipeptides were obtained and the chiral auxiliary BPB were recovered in high yields. We report herein the crystal structure of the title complex.

In the title complex, (Fig. 1), the Ni atom is in a distorted square-planar coordination by three N and one O atoms. The Ni-N and Ni-O bond lengths (Allen et al., 1987) and angles (Table 1) are within normal ranges. Rings A (C1-C6), B (C13-C18) and C (C20-C25) are, of course, planar and they are oriented at dihedral angles of A/B = 29.01 (3), A/C = 79.73 (3) and B/C = 83.37 (3) °. Rings D (N1/C8-C11), E (Ni/N1/N2/C11/C12), F (Ni/N2/N3/C13/C18/C19) and G (Ni/O5/N3/C26/C30) adopt envelope conformations with atoms C8, N1, C19 and N3 displaced by 0.609 (3), -0.431 (3), 0.421 (3) and -0.443 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 2) link the molecules into chains along the b-axis, in which they may be effective in the stabilization of the structure. There is also a weak C—H···π interaction (Table 2).

Related literature top

For the stoichiometric asymmetric synthesis of amino acids based on use of the chiral auxiliary (S)-2-[N-(N'-benzylprolyl)amino]benzophenone, see: Belokon (1992). For non-proteinogenic amino acids synthesized by this method, see: Belokon et al. (1985, 1986, 1990); Belokon, Bakhmutov et al. (1988); Belokon, Bulychev et al. (1988); Belokon, Sagyan et al. (1988); Soloshonok et al. (1992, 2001). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C13–C18 ring.

Experimental top

For the preparation of the title complex, a solution of KOH (4.49 g, 0.08 mol) in MeOH (15 ml) was poured into a mechanically stirred mixture of BPB (1.92 g, 0.005 mol), nickel chloride hexahydrate (2.38 g, 0.025 mol) and L-glutamic acid (3.68 g, 0.025 mol) in MeOH (17.5 ml) under argon atmosphere at 313-323 K. The resulting mixture was stirred at 328-338 K for 2 h, and then neutralized with AcOH (4.6 ml, 0.08 mol) and diluted with water (200 ml). After 6 h, the separated crystalline solid was filtered and washed twice with water. The title complex was purified by recrystallization in an acetone solution. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone/hexane/AcOH (6:4:1) mixture after three weeks.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(SP-4-4)-[Hydrogen N-({2-[(2S)-(1-benzylpyrrolidine-2- carboxamido]phenyl}(phenyl)methylene)-L-glutamato(2-)]nickel(II) top
Crystal data top
[Ni(C30H29N3O5)]F(000) = 1192
Mr = 570.27Dx = 1.384 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.4570 (19) Åθ = 9–14°
b = 14.293 (3) ŵ = 0.75 mm1
c = 20.251 (4) ÅT = 294 K
V = 2737.3 (10) Å3Block, red
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Nonius–Nonius CAD-4
diffractometer
4168 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.806, Tmax = 0.864l = 2424
5494 measured reflections3 standard reflections every 120 min
4976 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.1P)2 + 0.28P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.39 e Å3
4976 reflectionsΔρmin = 0.48 e Å3
334 parametersAbsolute structure: Flack (1983), 2145 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Secondary atom site location: difference Fourier map
Crystal data top
[Ni(C30H29N3O5)]V = 2737.3 (10) Å3
Mr = 570.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4570 (19) ŵ = 0.75 mm1
b = 14.293 (3) ÅT = 294 K
c = 20.251 (4) Å0.30 × 0.20 × 0.20 mm
Data collection top
Nonius–Nonius CAD-4
diffractometer
4168 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.067
Tmin = 0.806, Tmax = 0.8643 standard reflections every 120 min
5494 measured reflections intensity decay: 1%
4976 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.39 e Å3
S = 1.00Δρmin = 0.48 e Å3
4976 reflectionsAbsolute structure: Flack (1983), 2145 Friedel pairs
334 parametersAbsolute structure parameter: 0.00 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.10306 (6)0.03868 (4)0.87481 (3)0.02921 (16)
O10.2907 (4)0.0036 (3)0.9260 (2)0.0672 (13)
O20.3316 (4)0.3086 (3)0.7881 (2)0.0709 (13)
O30.5596 (4)0.3039 (3)0.7646 (3)0.0745 (14)
H3B0.54030.35130.74360.112*
O40.4826 (3)0.0397 (3)0.80568 (16)0.0444 (8)
O50.2552 (3)0.0681 (2)0.82123 (17)0.0418 (9)
N10.0300 (4)0.0824 (3)0.8094 (2)0.0410 (10)
N20.0498 (4)0.0211 (3)0.92988 (18)0.0332 (9)
N30.2332 (4)0.0207 (2)0.92937 (17)0.0274 (8)
C10.1321 (8)0.3251 (5)0.9817 (5)0.087
H1A0.15740.35111.02210.105*
C20.2344 (9)0.3103 (5)0.9359 (4)0.079
H2A0.32700.32950.94360.095*
C30.1983 (8)0.2664 (5)0.8781 (5)0.087 (2)
H3A0.26770.25580.84650.105*
C40.0602 (6)0.2372 (4)0.8655 (4)0.0598 (15)
C50.0440 (8)0.2567 (4)0.9092 (4)0.0727 (19)
H5A0.13750.24080.90040.087*
C60.0050 (8)0.3036 (5)0.9709 (4)0.080
H6A0.07360.31841.00210.096*
C70.0263 (6)0.1871 (4)0.8028 (3)0.0541 (15)
H7A0.06710.20590.78810.065*
H7B0.09350.20600.76910.065*
C80.0002 (6)0.0406 (6)0.7432 (2)0.0621 (16)
H8A0.05020.07410.70870.075*
H8B0.10030.04200.73370.075*
C90.0521 (6)0.0571 (5)0.7487 (3)0.0694 (19)
H9A0.01340.09570.77360.083*
H9B0.06690.08470.70550.083*
C100.1893 (6)0.0450 (5)0.7850 (3)0.0636 (15)
H10A0.20800.09880.81280.076*
H10B0.26690.03770.75410.076*
C110.1723 (5)0.0431 (4)0.8270 (2)0.0406 (11)
H11A0.24630.08830.81560.049*
C120.1781 (5)0.0219 (4)0.9002 (2)0.0434 (12)
C130.0335 (5)0.0151 (3)0.9983 (2)0.0344 (10)
C140.1412 (6)0.0480 (5)1.0402 (3)0.0597 (15)
H14A0.22370.07201.02190.072*
C150.1267 (7)0.0453 (5)1.1074 (3)0.0700 (19)
H15A0.19740.07051.13400.084*
C160.0091 (7)0.0060 (5)1.1362 (3)0.0649 (17)
H16A0.00210.00141.18190.078*
C170.0988 (6)0.0268 (4)1.0961 (2)0.0455 (11)
H17A0.17930.05251.11520.055*
C180.0887 (5)0.0217 (3)1.0272 (2)0.0336 (10)
C190.2138 (4)0.0498 (3)0.98942 (19)0.0286 (9)
C200.3174 (5)0.1124 (3)1.0232 (2)0.0325 (10)
C210.4508 (6)0.0831 (4)1.0417 (3)0.0488 (13)
H21A0.47970.02201.03320.059*
C220.5418 (6)0.1454 (6)1.0730 (3)0.068 (2)
H22A0.63220.12651.08510.082*
C230.4972 (8)0.2360 (6)1.0862 (3)0.081 (2)
H23A0.55740.27751.10760.097*
C240.3652 (8)0.2642 (5)1.0678 (3)0.074 (2)
H24A0.33580.32491.07690.088*
C250.2750 (6)0.2036 (4)1.0357 (3)0.0513 (13)
H25A0.18590.22381.02240.062*
C260.3611 (4)0.0461 (3)0.89063 (18)0.0254 (8)
H26A0.44570.04430.91860.031*
C270.3408 (5)0.1430 (3)0.8613 (2)0.0330 (10)
H27A0.31530.18610.89640.040*
H27B0.26290.14110.83020.040*
C280.4708 (5)0.1796 (4)0.8265 (3)0.0467 (13)
H28A0.50210.13370.79440.056*
H28B0.54600.18790.85850.056*
C290.4445 (6)0.2708 (4)0.7921 (3)0.0472 (13)
C300.3713 (4)0.0262 (3)0.8355 (2)0.0305 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0254 (2)0.0311 (3)0.0311 (3)0.0020 (2)0.0025 (2)0.0091 (2)
O10.0267 (18)0.118 (4)0.057 (2)0.013 (2)0.0037 (16)0.030 (2)
O20.044 (2)0.062 (3)0.106 (4)0.000 (2)0.006 (2)0.044 (3)
O30.054 (2)0.055 (2)0.114 (4)0.0033 (19)0.031 (2)0.045 (3)
O40.0334 (17)0.049 (2)0.0514 (19)0.0001 (17)0.0132 (14)0.0137 (19)
O50.0295 (16)0.048 (2)0.048 (2)0.0069 (14)0.0043 (14)0.0258 (15)
N10.029 (2)0.052 (3)0.042 (2)0.0028 (18)0.0007 (18)0.0144 (19)
N20.0316 (18)0.038 (2)0.0300 (18)0.0017 (17)0.0020 (15)0.0074 (16)
N30.0294 (18)0.0202 (19)0.0327 (19)0.0019 (14)0.0035 (15)0.0020 (15)
C10.0800.0700.1120.0060.0110.016
C20.0790.0790.0790.0000.0000.000
C30.080 (4)0.058 (4)0.124 (6)0.020 (3)0.012 (5)0.002 (4)
C40.060 (3)0.034 (3)0.086 (4)0.009 (2)0.000 (3)0.020 (3)
C50.081 (4)0.044 (3)0.093 (5)0.004 (3)0.003 (3)0.006 (3)
C60.0740.0610.1050.0210.0060.011
C70.043 (3)0.050 (3)0.070 (4)0.002 (2)0.001 (3)0.042 (3)
C80.049 (3)0.103 (5)0.034 (3)0.001 (4)0.004 (2)0.001 (3)
C90.058 (4)0.095 (6)0.055 (3)0.014 (4)0.011 (3)0.018 (4)
C100.056 (3)0.071 (4)0.064 (4)0.004 (3)0.016 (3)0.002 (3)
C110.027 (2)0.056 (3)0.039 (2)0.001 (3)0.0052 (18)0.009 (3)
C120.037 (2)0.047 (3)0.046 (3)0.008 (2)0.006 (2)0.013 (2)
C130.034 (2)0.035 (3)0.033 (2)0.0022 (19)0.0107 (19)0.0062 (18)
C140.049 (3)0.079 (4)0.052 (3)0.015 (3)0.014 (2)0.012 (3)
C150.062 (4)0.110 (5)0.038 (3)0.023 (4)0.016 (2)0.004 (3)
C160.074 (4)0.086 (4)0.034 (3)0.015 (3)0.017 (3)0.008 (3)
C170.049 (3)0.055 (3)0.033 (2)0.014 (3)0.004 (2)0.003 (2)
C180.030 (2)0.036 (2)0.034 (2)0.003 (2)0.0039 (18)0.0050 (18)
C190.038 (2)0.023 (2)0.0248 (19)0.0011 (18)0.0016 (16)0.0050 (17)
C200.032 (2)0.039 (2)0.026 (2)0.008 (2)0.0026 (18)0.0060 (19)
C210.047 (3)0.059 (3)0.041 (3)0.008 (3)0.003 (2)0.001 (2)
C220.038 (3)0.114 (6)0.052 (3)0.023 (4)0.005 (3)0.012 (4)
C230.060 (4)0.110 (6)0.071 (4)0.048 (4)0.009 (3)0.040 (4)
C240.089 (5)0.058 (4)0.074 (4)0.036 (4)0.022 (4)0.033 (3)
C250.061 (3)0.045 (3)0.048 (3)0.005 (3)0.009 (3)0.015 (2)
C260.0232 (19)0.024 (2)0.029 (2)0.0026 (17)0.0000 (14)0.0006 (17)
C270.036 (2)0.026 (2)0.037 (3)0.0020 (18)0.0061 (19)0.0003 (18)
C280.037 (3)0.042 (3)0.061 (3)0.001 (2)0.007 (2)0.012 (3)
C290.042 (3)0.040 (3)0.060 (3)0.005 (2)0.006 (2)0.018 (3)
C300.026 (2)0.030 (2)0.035 (2)0.0024 (19)0.0024 (17)0.0031 (18)
Geometric parameters (Å, º) top
Ni—N21.843 (4)C10—C111.527 (9)
Ni—O51.850 (3)C10—H10A0.9700
Ni—N31.859 (4)C10—H10B0.9700
Ni—N11.931 (4)C11—C121.515 (7)
O1—C121.215 (6)C11—H11A0.9800
O2—C291.200 (6)C13—C181.398 (6)
O3—C291.310 (6)C13—C141.407 (7)
O3—H3B0.8200C14—C151.368 (8)
O4—C301.229 (5)C14—H14A0.9300
O5—C301.283 (5)C15—C161.376 (9)
N1—C81.493 (7)C15—H15A0.9300
N1—C111.501 (6)C16—C171.386 (7)
N1—C71.504 (7)C16—H16A0.9300
N2—C121.353 (6)C17—C181.400 (6)
N2—C131.397 (6)C17—H17A0.9300
N3—C191.298 (5)C18—C191.465 (6)
N3—C261.487 (5)C19—C201.492 (6)
C1—C61.351 (10)C20—C211.382 (7)
C1—C21.357 (10)C20—C251.387 (7)
C1—H1A0.9300C21—C221.392 (8)
C2—C31.372 (11)C21—H21A0.9300
C2—H2A0.9300C22—C231.386 (11)
C3—C41.395 (9)C22—H22A0.9300
C3—H3A0.9300C23—C241.364 (11)
C4—C51.354 (9)C23—H23A0.9300
C4—C71.492 (9)C24—C251.378 (8)
C5—C61.466 (11)C24—H24A0.9300
C5—H5A0.9300C25—H25A0.9300
C6—H6A0.9300C26—C271.520 (6)
C7—H7A0.9700C26—C301.524 (6)
C7—H7B0.9700C26—H26A0.9800
C8—C91.485 (10)C27—C281.511 (6)
C8—H8A0.9700C27—H27A0.9700
C8—H8B0.9700C27—H27B0.9700
C9—C101.501 (8)C28—C291.499 (7)
C9—H9A0.9700C28—H28A0.9700
C9—H9B0.9700C28—H28B0.9700
N2—Ni—O5174.69 (17)C10—C11—H11A109.7
N2—Ni—N395.59 (16)O1—C12—N2126.4 (4)
O5—Ni—N386.41 (15)O1—C12—C11119.7 (4)
N2—Ni—N187.02 (16)N2—C12—C11113.8 (4)
O5—Ni—N191.78 (15)N2—C13—C18122.0 (4)
N3—Ni—N1170.73 (18)N2—C13—C14119.9 (4)
C29—O3—H3B109.5C18—C13—C14118.1 (4)
C30—O5—Ni115.3 (3)C15—C14—C13121.3 (5)
C8—N1—C11103.5 (4)C15—C14—H14A119.4
C8—N1—C7108.3 (5)C13—C14—H14A119.4
C11—N1—C7114.5 (4)C14—C15—C16120.9 (5)
C8—N1—Ni111.3 (3)C14—C15—H15A119.6
C11—N1—Ni107.5 (3)C16—C15—H15A119.6
C7—N1—Ni111.6 (3)C15—C16—C17119.0 (5)
C12—N2—C13122.7 (4)C15—C16—H16A120.5
C12—N2—Ni115.7 (3)C17—C16—H16A120.5
C13—N2—Ni121.5 (3)C16—C17—C18121.1 (5)
C19—N3—C26122.0 (4)C16—C17—H17A119.4
C19—N3—Ni127.6 (3)C18—C17—H17A119.4
C26—N3—Ni109.7 (2)C13—C18—C17119.5 (4)
C6—C1—C2122.6 (8)C13—C18—C19123.5 (4)
C6—C1—H1A118.7C17—C18—C19116.8 (4)
C2—C1—H1A118.7N3—C19—C18121.0 (4)
C1—C2—C3118.5 (8)N3—C19—C20121.9 (4)
C1—C2—H2A120.8C18—C19—C20117.1 (3)
C3—C2—H2A120.8C21—C20—C25120.0 (5)
C2—C3—C4121.8 (9)C21—C20—C19122.8 (4)
C2—C3—H3A119.1C25—C20—C19117.2 (4)
C4—C3—H3A119.1C20—C21—C22119.6 (6)
C5—C4—C3120.0 (7)C20—C21—H21A120.2
C5—C4—C7120.0 (6)C22—C21—H21A120.2
C3—C4—C7120.0 (7)C23—C22—C21119.8 (6)
C4—C5—C6118.0 (7)C23—C22—H22A120.1
C4—C5—H5A121.0C21—C22—H22A120.1
C6—C5—H5A121.0C24—C23—C22120.1 (6)
C1—C6—C5118.9 (8)C24—C23—H23A119.9
C1—C6—H6A120.5C22—C23—H23A119.9
C5—C6—H6A120.5C23—C24—C25120.6 (6)
C4—C7—N1113.3 (4)C23—C24—H24A119.7
C4—C7—H7A108.9C25—C24—H24A119.7
N1—C7—H7A108.9C24—C25—C20119.8 (6)
C4—C7—H7B108.9C24—C25—H25A120.1
N1—C7—H7B108.9C20—C25—H25A120.1
H7A—C7—H7B107.7N3—C26—C27109.0 (3)
C9—C8—N1104.3 (5)N3—C26—C30105.8 (3)
C9—C8—H8A110.9C27—C26—C30109.9 (3)
N1—C8—H8A110.9N3—C26—H26A110.7
C9—C8—H8B110.9C27—C26—H26A110.7
N1—C8—H8B110.9C30—C26—H26A110.7
H8A—C8—H8B108.9C28—C27—C26113.2 (4)
C8—C9—C10102.3 (5)C28—C27—H27A108.9
C8—C9—H9A111.3C26—C27—H27A108.9
C10—C9—H9A111.3C28—C27—H27B108.9
C8—C9—H9B111.3C26—C27—H27B108.9
C10—C9—H9B111.3H27A—C27—H27B107.7
H9A—C9—H9B109.2C29—C28—C27112.5 (4)
C9—C10—C11106.1 (5)C29—C28—H28A109.1
C9—C10—H10A110.5C27—C28—H28A109.1
C11—C10—H10A110.5C29—C28—H28B109.1
C9—C10—H10B110.5C27—C28—H28B109.1
C11—C10—H10B110.5H28A—C28—H28B107.8
H10A—C10—H10B108.7O2—C29—O3123.3 (5)
N1—C11—C12109.8 (4)O2—C29—C28124.7 (4)
N1—C11—C10105.7 (4)O3—C29—C28112.0 (5)
C12—C11—C10112.1 (5)O4—C30—O5123.3 (4)
N1—C11—H11A109.7O4—C30—C26121.3 (4)
C12—C11—H11A109.7O5—C30—C26115.3 (3)
N3—Ni—O5—C3010.8 (3)C12—N2—C13—C18154.4 (5)
N1—Ni—O5—C30160.1 (4)Ni—N2—C13—C1831.0 (6)
N2—Ni—N1—C8134.8 (4)C12—N2—C13—C1426.6 (7)
O5—Ni—N1—C850.4 (4)Ni—N2—C13—C14148.0 (4)
N2—Ni—N1—C1122.1 (4)N2—C13—C14—C15178.2 (6)
O5—Ni—N1—C11163.0 (4)C18—C13—C14—C150.8 (9)
N2—Ni—N1—C7104.2 (4)C13—C14—C15—C163.3 (11)
O5—Ni—N1—C770.7 (3)C14—C15—C16—C173.4 (11)
N3—Ni—N2—C12155.9 (4)C15—C16—C17—C181.0 (10)
N1—Ni—N2—C1215.2 (4)N2—C13—C18—C17179.5 (4)
N3—Ni—N2—C1329.1 (4)C14—C13—C18—C171.5 (7)
N1—Ni—N2—C13159.8 (4)N2—C13—C18—C195.1 (7)
N2—Ni—N3—C198.3 (4)C14—C13—C18—C19173.9 (5)
O5—Ni—N3—C19166.8 (4)C16—C17—C18—C131.4 (8)
N2—Ni—N3—C26162.0 (3)C16—C17—C18—C19174.3 (5)
O5—Ni—N3—C2622.9 (3)C26—N3—C19—C18178.3 (4)
C6—C1—C2—C34.2 (13)Ni—N3—C19—C1812.5 (6)
C1—C2—C3—C40.1 (11)C26—N3—C19—C201.2 (6)
C2—C3—C4—C53.8 (10)Ni—N3—C19—C20168.0 (3)
C2—C3—C4—C7178.2 (6)C13—C18—C19—N317.8 (7)
C3—C4—C5—C63.6 (9)C17—C18—C19—N3157.7 (4)
C7—C4—C5—C6178.4 (5)C13—C18—C19—C20162.6 (4)
C2—C1—C6—C54.2 (12)C17—C18—C19—C2021.9 (6)
C4—C5—C6—C10.2 (10)N3—C19—C20—C2168.7 (6)
C5—C4—C7—N187.6 (7)C18—C19—C20—C21110.9 (5)
C3—C4—C7—N194.5 (7)N3—C19—C20—C25111.1 (5)
C8—N1—C7—C4177.8 (5)C18—C19—C20—C2569.4 (5)
C11—N1—C7—C463.0 (6)C25—C20—C21—C220.2 (7)
Ni—N1—C7—C459.4 (5)C19—C20—C21—C22180.0 (5)
C11—N1—C8—C939.9 (5)C20—C21—C22—C230.8 (9)
C7—N1—C8—C9161.8 (4)C21—C22—C23—C240.8 (10)
Ni—N1—C8—C975.3 (5)C22—C23—C24—C250.4 (11)
N1—C8—C9—C1042.2 (5)C23—C24—C25—C201.4 (9)
C8—C9—C10—C1128.2 (6)C21—C20—C25—C241.3 (8)
C8—N1—C11—C12142.5 (5)C19—C20—C25—C24178.9 (5)
C7—N1—C11—C1299.8 (5)C19—N3—C26—C2781.6 (4)
Ni—N1—C11—C1224.7 (5)Ni—N3—C26—C2789.4 (3)
C8—N1—C11—C1021.4 (5)C19—N3—C26—C30160.3 (4)
C7—N1—C11—C10139.0 (5)Ni—N3—C26—C3028.7 (4)
Ni—N1—C11—C1096.4 (4)N3—C26—C27—C28174.3 (4)
C9—C10—C11—N14.2 (6)C30—C26—C27—C2870.2 (5)
C9—C10—C11—C12115.5 (5)C26—C27—C28—C29174.2 (4)
C13—N2—C12—O112.0 (9)C27—C28—C29—O24.8 (9)
Ni—N2—C12—O1173.1 (5)C27—C28—C29—O3177.2 (5)
C13—N2—C12—C11171.5 (4)Ni—O5—C30—O4178.3 (4)
Ni—N2—C12—C113.4 (6)Ni—O5—C30—C264.6 (5)
N1—C11—C12—O1168.4 (5)N3—C26—C30—O4160.9 (4)
C10—C11—C12—O174.4 (7)C27—C26—C30—O481.6 (5)
N1—C11—C12—N214.8 (7)N3—C26—C30—O521.9 (5)
C10—C11—C12—N2102.4 (5)C27—C26—C30—O595.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O4i0.821.862.680 (6)174
C2—H2A···Cg1ii0.932.933.722 (5)144
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C30H29N3O5)]
Mr570.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)9.4570 (19), 14.293 (3), 20.251 (4)
V3)2737.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerNonius–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.806, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
5494, 4976, 4168
Rint0.067
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.00
No. of reflections4976
No. of parameters334
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.48
Absolute structureFlack (1983), 2145 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Ni—N21.843 (4)Ni—N31.859 (4)
Ni—O51.850 (3)Ni—N11.931 (4)
N2—Ni—O5174.69 (17)N2—Ni—N187.02 (16)
N2—Ni—N395.59 (16)O5—Ni—N191.78 (15)
O5—Ni—N386.41 (15)N3—Ni—N1170.73 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O4i0.821.862.680 (6)174
C2—H2A···Cg1ii0.932.933.722 (5)144
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program, grant No. 2009CB724700) and the Graduate Student Innovation Project of Jiangsu Province (grant No. CX08B_115Z). The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBelokon, Y. N. (1992). Pure Appl. Chem. 64, 1917–1924.  CrossRef CAS Web of Science Google Scholar
First citationBelokon, Y. N., Bakhmutov, V. I., Chernoglazova, N. I., Kochetkov, K. A., Vitt, S. V., Garbalinskaya, N. S. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 305–312.  CrossRef Web of Science Google Scholar
First citationBelokon, Y. N., Bulychev, A. G., Pavlov, V. A., Fedorova, E. B., Tsyryapkin, V. A., Bakhmutov, V. A. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2075–2083.  CrossRef Web of Science Google Scholar
First citationBelokon, Y. N., Bulychev, A. G., Ryzhov, M. G., Vitt, S. V., Batsanov, A. S., Struchkov, Y. T., Bakhmutov, V. I. & Belikov, V. M. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 1865–1872.  CSD CrossRef Web of Science Google Scholar
First citationBelokon, Y. N., Bulychev, A. G., Vitt, S. V., Struchkov, Y. T., Batsanov, A. S., Timofeeva, T. V., Tsyryapkin, V. A., Ryzhov, M. G., Lysova, L. A., Bakhmutov, V. I. & Belikov, V. M. (1985). J. Am. Chem. Soc. 107, 4252–4259.  CSD CrossRef CAS Web of Science Google Scholar
First citationBelokon, Y. N., Sagyan, A. S., Djamgaryan, S. M., Bakhmutov, V. I. & Belikov, V. M. (1988). Tetrahedron, 44, 5507–5514.  CrossRef CAS Web of Science Google Scholar
First citationBelokon, Y. N., Sagyan, A. S., Djamgaryan, S. M., Bakhmutov, V. I., Vitt, S. V., Batsanov, A. S., Struchkov, Y. T. & Belikov, V. M. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 2301–2310.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoloshonok, V. A., Belokon, Y. N., Kuzmina, N. A., Maleev, V. I., Svistunova, N. Y., Solodenko, V. A. & Kukhar, V. P. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1525–1529.  CrossRef Web of Science Google Scholar
First citationSoloshonok, V. A., Tang, X. J., Hruby, V. J. & Meervelt, L. V. (2001). Org. Lett. 3, 341–343.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m453-m454
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds