organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Di­hydro­dibenzo[c,e]thiepine

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: konno@chem.sci.osaka-u.ac.jp

(Received 26 February 2009; accepted 10 March 2009; online 14 March 2009)

In the title compound, C14H12S, the central seven-membered C6S ring has a twist-boat conformation. The dihedral angle between the two benzene rings is 52.4 (1)°.

Related literature

For the preparation of a pair of atrop diastereomeric RhIII complexes having a 2,2′-bis­(2-amino­ethyl­thio­meth­yl)-1,1′-biphenyl ligand, see: Yoshinari & Konno (2008[Yoshinari, N. & Konno, T. (2008). Inorg. Chem. 47, 7450-7452.]). For the synthesis, see: Foubelo et al. (2005[Foubelo, F., Moreno, B., Soler, T. & Yus, M. (2005). Tetrahedron, 61, 9082-9096.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12S

  • Mr = 212.30

  • Monoclinic, P 21 /n

  • a = 5.645 (3) Å

  • b = 17.316 (9) Å

  • c = 11.398 (5) Å

  • β = 92.444 (19)°

  • V = 1113.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 200 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.962, Tmax = 0.975

  • 7548 measured reflections

  • 2464 independent reflections

  • 1324 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.165

  • S = 1.06

  • 2464 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

As a part of our ongoing studies on the synthesis and structures of the transition metal complexes with thioether donor groups, we prepared a pair of atrop diastereomeric RhIII complexes having a 2,2'-bis(2-aminoethylthiomethyl)-1,1'-biphenyl ligand (Yoshinari & Konno, 2008). We report herein the structure of the title compound, 5,7-dihydrodibenzo[c,e]thiepine, (I), which was accidentally obtained in the course of a direct synthesis of 2,2'-bis(2-aminoethylthiomethyl)-1,1'-biphenyl from 2,2'-bis(bromomethyl)-1,1'-biphenyl and 2-aminoethanethiol.

In the crystal structure of (I), two aromatic rings (C2—C7 and C8—C13) are inclined around the C7—C8 bond with a dihedral angle of 52.4 (1)°.

This compound (I) has been synthesized by treatment of 2,2'-bis(bromomethyl)-1,1'-biphenyl with sulfide anion, but has not been structurally characterized (Foubelo et al. 2005).

Related literature top

For the preparation of a pair of atrop diastereomeric RhIII complexes having a 2,2'-bis(2-aminoethylthiomethyl)-1,1'-biphenyl ligand, see: Yoshinari & Konno (2008). For the synthesis, see: Foubelo et al. (2005).

Experimental top

The reaction of 2,2'-bis(bromomethyl)-1,1'-biphenyl with 2-aminoethanethiol in ethanol gave a colorless solution. To the resulting solution was added diethylether, followed by allowing to stand in a refrigerator, which produced colorless stick crystals of (I) as a byproduct.

Refinement top

H atoms bonded to C atoms were placed at calculated positions (C—H = 0.95 or 0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound, (I), with the atom numbering scheme. Displacement ellipsoids are at the 70% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of title compound, (I). Displacement ellipsoids are at the 70% probability level. H atoms are drawn as spheres of arbitrary radii.
5,7-Dihydrodibenzo[c,e]thiepine top
Crystal data top
C14H12SF(000) = 448
Mr = 212.30Dx = 1.267 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4537 reflections
a = 5.645 (3) Åθ = 3.6–27.5°
b = 17.316 (9) ŵ = 0.25 mm1
c = 11.398 (5) ÅT = 200 K
β = 92.444 (19)°Prismatic, colourless
V = 1113.1 (10) Å30.15 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2464 independent reflections
Radiation source: fine-focus sealed tube1324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 47
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2222
Tmin = 0.962, Tmax = 0.975l = 1414
7548 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0655P)2]
where P = (Fo2 + 2Fc2)/3
2464 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Crystal data top
C14H12SV = 1113.1 (10) Å3
Mr = 212.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.645 (3) ŵ = 0.25 mm1
b = 17.316 (9) ÅT = 200 K
c = 11.398 (5) Å0.15 × 0.15 × 0.10 mm
β = 92.444 (19)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2464 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1324 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.975Rint = 0.114
7548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2464 reflectionsΔρmin = 0.30 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.27862 (17)0.41043 (5)0.05701 (6)0.0391 (3)
C11.3831 (7)0.39078 (19)0.0932 (2)0.0357 (8)
H11.41030.33460.10230.043*
H21.53690.41720.10830.043*
C21.2131 (6)0.41676 (17)0.1826 (2)0.0281 (7)
C31.2565 (7)0.48526 (17)0.2447 (2)0.0330 (8)
H31.39260.51530.22940.040*
C41.1020 (7)0.50965 (19)0.3284 (2)0.0363 (9)
H41.12890.55720.36840.044*
C50.9098 (6)0.4648 (2)0.3532 (2)0.0363 (9)
H50.80610.48100.41200.044*
C60.8660 (6)0.39652 (19)0.2937 (2)0.0332 (8)
H60.73310.36590.31230.040*
C71.0160 (6)0.37196 (17)0.2059 (2)0.0276 (8)
C80.9612 (6)0.30059 (17)0.1387 (2)0.0293 (7)
C90.9182 (7)0.23099 (19)0.1957 (3)0.0369 (8)
H70.92360.22950.27900.044*
C100.8682 (7)0.1646 (2)0.1335 (3)0.0420 (9)
H80.84060.11760.17380.050*
C110.8582 (8)0.1662 (2)0.0120 (3)0.0483 (10)
H90.82420.12040.03130.058*
C120.8979 (7)0.23477 (19)0.0461 (3)0.0395 (9)
H100.88920.23570.12950.047*
C130.9499 (6)0.30201 (17)0.0150 (2)0.0270 (7)
C140.9761 (6)0.37741 (18)0.0492 (2)0.0320 (8)
H110.88330.41750.00950.038*
H120.90730.37160.13000.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0500 (6)0.0390 (5)0.0295 (4)0.0065 (5)0.0140 (4)0.0003 (4)
C10.038 (2)0.0342 (19)0.0360 (16)0.0057 (17)0.0081 (14)0.0011 (14)
C20.041 (2)0.0229 (16)0.0206 (13)0.0035 (15)0.0040 (12)0.0033 (12)
C30.046 (2)0.0246 (17)0.0286 (15)0.0038 (16)0.0003 (14)0.0045 (13)
C40.057 (3)0.0234 (17)0.0289 (16)0.0046 (17)0.0016 (15)0.0023 (13)
C50.044 (2)0.041 (2)0.0239 (15)0.0118 (18)0.0062 (14)0.0004 (14)
C60.039 (2)0.039 (2)0.0226 (14)0.0031 (16)0.0078 (13)0.0036 (13)
C70.038 (2)0.0242 (17)0.0213 (14)0.0017 (15)0.0039 (13)0.0045 (12)
C80.033 (2)0.0237 (17)0.0312 (15)0.0039 (15)0.0029 (13)0.0009 (12)
C90.045 (2)0.0331 (19)0.0326 (16)0.0082 (17)0.0004 (14)0.0038 (14)
C100.048 (3)0.0267 (19)0.051 (2)0.0082 (18)0.0012 (17)0.0045 (15)
C110.069 (3)0.027 (2)0.048 (2)0.009 (2)0.0008 (18)0.0093 (15)
C120.056 (3)0.0317 (19)0.0310 (16)0.0033 (18)0.0023 (15)0.0054 (14)
C130.0226 (18)0.0290 (18)0.0296 (15)0.0006 (15)0.0033 (12)0.0012 (12)
C140.043 (2)0.0316 (18)0.0216 (14)0.0011 (17)0.0045 (13)0.0035 (12)
Geometric parameters (Å, º) top
S1—C141.807 (4)C7—C81.480 (4)
S1—C11.819 (3)C8—C91.395 (4)
C1—C21.499 (4)C8—C131.409 (4)
C1—H10.9900C9—C101.374 (5)
C1—H20.9900C9—H70.9500
C2—C71.391 (4)C10—C111.384 (4)
C2—C31.397 (4)C10—H80.9500
C3—C41.386 (5)C11—C121.382 (5)
C3—H30.9500C11—H90.9500
C4—C51.373 (5)C12—C131.382 (4)
C4—H40.9500C12—H100.9500
C5—C61.381 (4)C13—C141.507 (4)
C5—H50.9500C14—H110.9900
C6—C71.404 (4)C14—H120.9900
C6—H60.9500
C14—S1—C199.41 (15)C9—C8—C13118.6 (3)
C2—C1—S1113.1 (3)C9—C8—C7121.2 (2)
C2—C1—H1109.0C13—C8—C7120.2 (2)
S1—C1—H1109.0C10—C9—C8121.3 (3)
C2—C1—H2109.0C10—C9—H7119.3
S1—C1—H2109.0C8—C9—H7119.3
H1—C1—H2107.8C9—C10—C11119.8 (3)
C7—C2—C3120.1 (3)C9—C10—H8120.1
C7—C2—C1120.2 (3)C11—C10—H8120.1
C3—C2—C1119.7 (3)C12—C11—C10119.8 (3)
C4—C3—C2120.3 (3)C12—C11—H9120.1
C4—C3—H3119.8C10—C11—H9120.1
C2—C3—H3119.8C13—C12—C11121.2 (3)
C5—C4—C3119.7 (3)C13—C12—H10119.4
C5—C4—H4120.1C11—C12—H10119.4
C3—C4—H4120.1C12—C13—C8119.3 (3)
C4—C5—C6120.6 (3)C12—C13—C14120.6 (3)
C4—C5—H5119.7C8—C13—C14120.0 (3)
C6—C5—H5119.7C13—C14—S1114.2 (2)
C5—C6—C7120.6 (3)C13—C14—H11108.7
C5—C6—H6119.7S1—C14—H11108.7
C7—C6—H6119.7C13—C14—H12108.7
C2—C7—C6118.6 (3)S1—C14—H12108.7
C2—C7—C8121.2 (3)H11—C14—H12107.6
C6—C7—C8120.2 (3)
C14—S1—C1—C245.4 (3)C2—C7—C8—C1351.6 (5)
S1—C1—C2—C779.6 (3)C6—C7—C8—C13127.2 (3)
S1—C1—C2—C3102.0 (3)C13—C8—C9—C100.7 (5)
C7—C2—C3—C41.0 (5)C7—C8—C9—C10179.7 (4)
C1—C2—C3—C4179.4 (3)C8—C9—C10—C110.5 (5)
C2—C3—C4—C52.2 (5)C9—C10—C11—C120.2 (6)
C3—C4—C5—C61.5 (5)C10—C11—C12—C130.6 (6)
C4—C5—C6—C70.5 (5)C11—C12—C13—C80.4 (6)
C3—C2—C7—C61.0 (4)C11—C12—C13—C14175.8 (4)
C1—C2—C7—C6177.4 (3)C9—C8—C13—C120.3 (5)
C3—C2—C7—C8177.8 (3)C7—C8—C13—C12179.8 (3)
C1—C2—C7—C83.7 (4)C9—C8—C13—C14175.1 (3)
C5—C6—C7—C21.8 (4)C7—C8—C13—C144.4 (5)
C5—C6—C7—C8177.1 (3)C12—C13—C14—S1105.8 (3)
C2—C7—C8—C9128.8 (3)C8—C13—C14—S178.8 (3)
C6—C7—C8—C952.3 (5)C1—S1—C14—C1343.6 (2)

Experimental details

Crystal data
Chemical formulaC14H12S
Mr212.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)5.645 (3), 17.316 (9), 11.398 (5)
β (°) 92.444 (19)
V3)1113.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.962, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7548, 2464, 1324
Rint0.114
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.165, 1.06
No. of reflections2464
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

 

Acknowledgements

This work was supported by a Grant-in-Aid for JSPS Fellows from the Japan Society for the Promotion of Science (JSPS).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoubelo, F., Moreno, B., Soler, T. & Yus, M. (2005). Tetrahedron, 61, 9082–9096.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYoshinari, N. & Konno, T. (2008). Inorg. Chem. 47, 7450–7452.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds