organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o714-o715

N-[(2-Hydr­­oxy-1-naphthyl)(3-nitro­phenyl)meth­yl]acetamide

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 9 January 2009; accepted 28 February 2009; online 6 March 2009)

The title compound, C19H16N2O4, is of inter­est as a precursor to biologically active substituted quinolines and related compounds. The dihedral angle between the naphthalene ring system and the benzene ring is 81.9 (1)°. The crystal structure is stabilized by N—H⋯O inter­molecular hydrogen bonds, linking the mol­ecules into pairs around a center of symmetry. The crystal structure is further stabilized by inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into chains running along a axis. An intra­molecular C—H⋯O short contact is also present.

Related literature

For N-(substituted phen­yl)acetamides as precursors for the synthesis of hetrocyclic compounds, see: Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347-o348.], 2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]). For multicomponent reactions, see: Devi & Bhuyan (2004[Devi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625-8627.]); Domling & Ugi (2000[Domling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168-3210.]). For the properties and potential applications of amide-type compounds and their metal ion complexes, see: Saravanakumar et al. (2005[Saravanakumar, D., Sengottuvelan, N. & Kandaswamy, M. (2005). Inorg. Chem. Commun. 8, 386-389.]); Yin et al. (2004[Yin, Z., Yang, Z., He, J. & Cheng, J. P. (2004). Tetrahedron Lett. 45, 6803-6806.]). For related structures, see: Mosslemin et al. (2007[Mosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444-o445.]); Zia-ur-Rehman et al. (2008[Zia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Liu & Li (2004[Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694-o695.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O4

  • Mr = 336.34

  • Triclinic, [P \overline 1]

  • a = 7.5261 (4) Å

  • b = 8.8635 (5) Å

  • c = 13.3008 (7) Å

  • α = 74.720 (3)°

  • β = 73.754 (3)°

  • γ = 82.600 (3)°

  • V = 820.27 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.4 × 0.2 × 0.1 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.990

  • 9406 measured reflections

  • 3864 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 0.99

  • 3864 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.87 2.646 (2) 158
N1—H1A⋯O2ii 0.86 2.35 3.167 (2) 160
C11—H11⋯O4 0.98 2.28 2.739 (2) 107
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)'.

Supporting information


Comment top

N-(substituted phenyl)acetamides are well known for their importance as intermediates in organic synthesis. They are used as precursors for the synthesis of many hetrocyclic compounds (Wen et al., 2005, 2006). Multi-component reactions (MCRs) have attracted considerable attention in terms of the saving of both energy and raw materials (Devi & Bhuyan, 2004). They have merits over multi-step reactions in several aspects, including the simplicity of a one-pot procedure, possible structural variations and in building up complex molecules (Domling & Ugi, 2000). Much attention has been focused on amide-type compounds and their metal ion complexes for their properties and potential applications including molecular recognition, ion electrodes, photochemistry and topological structures in ion extraction, biochemistry, catalysis and magnetism (Saravanakumar et al., 2005; Yin et al., 2004). The amide linkage [–NHC(O)-] is known to be strong enough to form and maintain protein architectures and has been utilized to create various molecular devices for a spectrum of purposes in organic chemistry. In order to obtain fundamental information about this phenomenon, an X-ray crystal structure analysis of (I) was undertaken.

The conformation of (I), together with the atom-numbering scheme, is shown in Fig. 1. In the structure, all bond lengths and angles are within normal ranges (Allen et al., 1987), and comparable with those in previously reported structure (Mosslemin et al., 2007). The bond distance of C18=O4 is 1.222 (2) Å, which is typical for double bonds (Liu & Li., 2004). The nitro group is slighty twisted out of the plane of the benzene ring, as indicated by O2—N2—C16—C15 and O3—N2—C16—C15 torsion angles of -162.9 (2) and 14.4 (3)°, respectively, and comparable with those in previously reported structure (Zia-ur-Rehman et al., 2008).

The naphthalene ring is planar, the maximum deviation from the least squares plane being -0.027 (1) Å for atom C7. Atom O1 deviating by 0.05 (1) Å from the least squares plane of the naphthalene ring. The dihedral angle between the naphthalene and benzene ring is 81.9 (1)°. The dihedral angle between the fused rings is 1.1 (1)°.

The crystal structure is stabilized by N—H···O intermolecular hydrogen bonds (Table 1, Fig 2.) that generate centrosymmetric hydrogenbonded dimers with a cyclic R22(16) ring system (Bernstein, et al., 1995). The crystal structure is further stabilized by intermolecular O—H···O hydrogen bonds link the molecules into chains running along a axis.

Related literature top

For N-(substituted phenyl)acetamides as precursors for the synthesis of hetrocyclic compounds, see: Wen et al. (2005, 2006). For multi-component reactions, see: Devi & Bhuyan (2004); Domling & Ugi (2000). For the properties and potential applications of amide-type compounds and their metal ion complexes, see: Saravanakumar et al. (2005); Yin et al. (2004). For related structures, see: Mosslemin et al. (2007); Zia-ur-Rehman et al. (2008). For bond-length data, see: Allen et al. (1987); Liu & Li (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-nitrobenzaldehyde (10 mmol), β-naphthol (10 mmol) and iodine (0.4 mmol, 4 mol%) were mixed in acetonitrile (5 ml). To that suspension acetyl chloride (2.8 mmol, 0.2 ml) was added and the reaction mixture was stirred at room temperature for 3 h. After the completion of the reaction (as monitored by TLC), saturated sodium thiosulfate solution (5 ml) was added. The precipitated solid was filtered and dried. The dried sample was washed with diethyl ether (2 x 10 ml) and again dried. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in Ethanol.

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93, 0.98 and 0.96 Å aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the R22(16) rings. For the sake of clarity, H atoms not participating in the hydrogen bonding have been omitted. Hydrogen bonding is shown as dashed lines. [Symmetry codes: (*) -x + 2, -y + 1, -z + 1]
N-[(2-Hydroxy-1-naphthyl)(3-nitrophenyl)methyl]acetamide top
Crystal data top
C19H16N2O4Z = 2
Mr = 336.34F(000) = 352
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5261 (4) ÅCell parameters from 3864 reflections
b = 8.8635 (5) Åθ = 2.5–25°
c = 13.3008 (7) ŵ = 0.10 mm1
α = 74.720 (3)°T = 293 K
β = 73.754 (3)°Needle, colourless
γ = 82.600 (3)°0.4 × 0.2 × 0.1 mm
V = 820.27 (14) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3864 independent reflections
Radiation source: fine-focus sealed tube2227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.974, Tmax = 0.990k = 1111
9406 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.220P]
where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max = 0.009
227 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H16N2O4γ = 82.600 (3)°
Mr = 336.34V = 820.27 (14) Å3
Triclinic, P1Z = 2
a = 7.5261 (4) ÅMo Kα radiation
b = 8.8635 (5) ŵ = 0.10 mm1
c = 13.3008 (7) ÅT = 293 K
α = 74.720 (3)°0.4 × 0.2 × 0.1 mm
β = 73.754 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2227 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.026
9406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
3864 reflectionsΔρmin = 0.17 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.11375 (16)0.78003 (16)0.26550 (11)0.0490 (4)
H11.22590.75870.25250.074*
O20.9758 (4)0.5649 (2)0.62604 (17)0.1025 (7)
O30.8781 (4)0.6954 (3)0.74538 (16)0.1150 (8)
O40.46636 (19)0.7392 (2)0.26984 (17)0.0801 (6)
N10.74868 (19)0.71417 (18)0.29573 (12)0.0401 (4)
H1A0.84430.65280.30450.048*
N20.8965 (3)0.6794 (3)0.65559 (16)0.0667 (5)
C11.0777 (2)0.9135 (2)0.19395 (14)0.0385 (4)
C21.2195 (2)0.9945 (3)0.11175 (16)0.0502 (5)
H21.34250.95750.10560.060*
C31.1769 (3)1.1262 (3)0.04174 (17)0.0536 (5)
H31.27201.17930.01170.064*
C40.9922 (3)1.1848 (2)0.04788 (15)0.0473 (5)
C50.9457 (4)1.3208 (3)0.02594 (17)0.0632 (6)
H51.04021.37580.07860.076*
C60.7679 (4)1.3729 (3)0.0220 (2)0.0732 (7)
H60.74081.46190.07210.088*
C70.6253 (4)1.2929 (3)0.05736 (19)0.0634 (6)
H70.50291.32850.05950.076*
C80.6626 (3)1.1628 (2)0.13215 (17)0.0495 (5)
H80.56491.11260.18520.059*
C90.8474 (2)1.1027 (2)0.13058 (14)0.0384 (4)
C100.8943 (2)0.9665 (2)0.20492 (14)0.0353 (4)
C110.7483 (2)0.8774 (2)0.29803 (14)0.0356 (4)
H110.62760.92640.28890.043*
C120.7637 (2)0.8970 (2)0.40573 (14)0.0366 (4)
C130.7214 (2)1.0446 (2)0.42690 (16)0.0448 (5)
H130.68651.12720.37510.054*
C140.7299 (3)1.0718 (3)0.52306 (17)0.0508 (5)
H140.69981.17150.53560.061*
C150.7827 (3)0.9515 (3)0.60021 (16)0.0500 (5)
H150.78800.96770.66560.060*
C160.8275 (3)0.8069 (2)0.57761 (15)0.0452 (5)
C170.8192 (2)0.7764 (2)0.48202 (14)0.0411 (4)
H170.85040.67660.46970.049*
C180.6061 (2)0.6567 (2)0.28056 (16)0.0457 (5)
C190.6235 (3)0.4876 (3)0.2787 (2)0.0719 (7)
H19A0.54500.42930.34380.108*
H19B0.74990.44830.27340.108*
H19C0.58660.47640.21760.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0284 (6)0.0571 (9)0.0628 (9)0.0062 (6)0.0192 (6)0.0126 (7)
O20.163 (2)0.0682 (13)0.0971 (15)0.0310 (13)0.0825 (15)0.0215 (12)
O30.189 (3)0.1062 (17)0.0557 (12)0.0012 (16)0.0525 (14)0.0122 (11)
O40.0403 (8)0.0771 (12)0.1474 (17)0.0087 (8)0.0497 (10)0.0471 (12)
N10.0309 (7)0.0380 (9)0.0574 (9)0.0045 (6)0.0211 (7)0.0146 (7)
N20.0861 (14)0.0639 (14)0.0559 (12)0.0130 (11)0.0321 (10)0.0056 (11)
C10.0318 (8)0.0457 (11)0.0440 (10)0.0000 (8)0.0138 (7)0.0177 (9)
C20.0313 (9)0.0701 (14)0.0556 (12)0.0066 (9)0.0079 (8)0.0277 (11)
C30.0516 (12)0.0623 (14)0.0462 (11)0.0172 (10)0.0023 (9)0.0161 (11)
C40.0581 (12)0.0454 (12)0.0416 (10)0.0068 (9)0.0100 (9)0.0170 (9)
C50.0878 (18)0.0488 (13)0.0467 (12)0.0081 (12)0.0087 (12)0.0080 (11)
C60.104 (2)0.0478 (14)0.0603 (15)0.0171 (14)0.0250 (14)0.0070 (12)
C70.0736 (15)0.0513 (13)0.0669 (15)0.0205 (12)0.0295 (12)0.0161 (12)
C80.0502 (11)0.0455 (12)0.0554 (12)0.0086 (9)0.0204 (9)0.0145 (10)
C90.0424 (9)0.0368 (10)0.0410 (10)0.0010 (8)0.0135 (8)0.0162 (8)
C100.0314 (8)0.0386 (10)0.0418 (10)0.0003 (7)0.0128 (7)0.0165 (8)
C110.0268 (8)0.0343 (10)0.0496 (10)0.0039 (7)0.0154 (7)0.0131 (8)
C120.0238 (7)0.0404 (10)0.0462 (10)0.0016 (7)0.0079 (7)0.0126 (8)
C130.0374 (9)0.0424 (11)0.0554 (12)0.0021 (8)0.0107 (8)0.0162 (9)
C140.0437 (10)0.0500 (12)0.0622 (13)0.0030 (9)0.0055 (9)0.0280 (11)
C150.0436 (10)0.0636 (14)0.0466 (11)0.0122 (10)0.0046 (9)0.0229 (11)
C160.0413 (10)0.0504 (12)0.0440 (11)0.0097 (9)0.0106 (8)0.0084 (9)
C170.0389 (9)0.0405 (11)0.0468 (11)0.0037 (8)0.0121 (8)0.0133 (9)
C180.0350 (9)0.0511 (12)0.0568 (12)0.0047 (8)0.0161 (8)0.0175 (10)
C190.0677 (15)0.0586 (15)0.103 (2)0.0135 (12)0.0270 (14)0.0323 (15)
Geometric parameters (Å, º) top
O1—C11.359 (2)C7—H70.9300
O1—H10.8200C8—C91.420 (3)
O2—N21.209 (3)C8—H80.9300
O3—N21.207 (3)C9—C101.420 (2)
O4—C181.222 (2)C10—C111.520 (2)
N1—C181.329 (2)C11—C121.525 (2)
N1—C111.455 (2)C11—H110.9800
N1—H1A0.8600C12—C171.378 (2)
N2—C161.468 (3)C12—C131.389 (3)
C1—C101.380 (2)C13—C141.382 (3)
C1—C21.407 (3)C13—H130.9300
C2—C31.353 (3)C14—C151.375 (3)
C2—H20.9300C14—H140.9300
C3—C41.408 (3)C15—C161.372 (3)
C3—H30.9300C15—H150.9300
C4—C51.414 (3)C16—C171.387 (3)
C4—C91.428 (3)C17—H170.9300
C5—C61.349 (3)C18—O41.222 (2)
C5—H50.9300C18—C191.494 (3)
C6—C71.391 (4)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.366 (3)C19—H19C0.9600
C1—O1—H1109.5C9—C10—C11121.98 (14)
C18—N1—C11122.19 (15)N1—C11—C10112.60 (14)
C18—N1—H1A118.9N1—C11—C12112.92 (14)
C11—N1—H1A118.9C10—C11—C12111.04 (13)
O3—N2—O2122.6 (2)N1—C11—H11106.6
O3—N2—C16118.8 (2)C10—C11—H11106.6
O2—N2—C16118.6 (2)C12—C11—H11106.6
O1—C1—C10116.89 (16)C17—C12—C13118.70 (17)
O1—C1—C2122.07 (15)C17—C12—C11123.28 (16)
C10—C1—C2121.03 (17)C13—C12—C11118.02 (16)
C3—C2—C1120.01 (18)C14—C13—C12121.61 (19)
C3—C2—H2120.0C14—C13—H13119.2
C1—C2—H2120.0C12—C13—H13119.2
C2—C3—C4121.59 (19)C15—C14—C13120.02 (19)
C2—C3—H3119.2C15—C14—H14120.0
C4—C3—H3119.2C13—C14—H14120.0
C3—C4—C5122.1 (2)C16—C15—C14117.86 (18)
C3—C4—C9118.75 (18)C16—C15—H15121.1
C5—C4—C9119.13 (19)C14—C15—H15121.1
C6—C5—C4121.8 (2)C15—C16—C17123.22 (19)
C6—C5—H5119.1C15—C16—N2118.79 (18)
C4—C5—H5119.1C17—C16—N2117.91 (19)
C5—C6—C7119.7 (2)C12—C17—C16118.56 (18)
C5—C6—H6120.2C12—C17—H17120.7
C7—C6—H6120.2C16—C17—H17120.7
C8—C7—C6121.0 (2)O4—C18—N1120.94 (18)
C8—C7—H7119.5O4—C18—N1120.94 (18)
C6—C7—H7119.5O4—C18—C19121.76 (18)
C7—C8—C9121.4 (2)O4—C18—C19121.76 (18)
C7—C8—H8119.3N1—C18—C19117.29 (17)
C9—C8—H8119.3C18—C19—H19A109.5
C10—C9—C8123.85 (17)C18—C19—H19B109.5
C10—C9—C4119.07 (16)H19A—C19—H19B109.5
C8—C9—C4117.07 (17)C18—C19—H19C109.5
C1—C10—C9119.52 (16)H19A—C19—H19C109.5
C1—C10—C11118.50 (15)H19B—C19—H19C109.5
O1—C1—C2—C3179.40 (18)C1—C10—C11—N158.74 (19)
C10—C1—C2—C30.2 (3)C9—C10—C11—N1122.18 (17)
C1—C2—C3—C40.7 (3)C1—C10—C11—C1269.00 (19)
C2—C3—C4—C5178.9 (2)C9—C10—C11—C12110.08 (17)
C2—C3—C4—C90.3 (3)N1—C11—C12—C1715.6 (2)
C3—C4—C5—C6177.5 (2)C10—C11—C12—C17111.95 (18)
C9—C4—C5—C61.7 (3)N1—C11—C12—C13165.13 (14)
C4—C5—C6—C70.9 (4)C10—C11—C12—C1367.30 (18)
C5—C6—C7—C80.6 (4)C17—C12—C13—C141.4 (3)
C6—C7—C8—C91.2 (3)C11—C12—C13—C14179.28 (16)
C7—C8—C9—C10178.80 (19)C12—C13—C14—C150.6 (3)
C7—C8—C9—C40.4 (3)C13—C14—C15—C160.6 (3)
C3—C4—C9—C101.0 (3)C14—C15—C16—C171.0 (3)
C5—C4—C9—C10179.76 (18)C14—C15—C16—N2175.85 (18)
C3—C4—C9—C8178.19 (18)O3—N2—C16—C1514.4 (3)
C5—C4—C9—C81.0 (3)O2—N2—C16—C15162.9 (2)
O1—C1—C10—C9178.11 (15)O3—N2—C16—C17168.6 (2)
C2—C1—C10—C91.5 (3)O2—N2—C16—C1714.1 (3)
O1—C1—C10—C112.8 (2)C13—C12—C17—C161.1 (2)
C2—C1—C10—C11177.60 (16)C11—C12—C17—C16179.69 (16)
C8—C9—C10—C1177.26 (17)C15—C16—C17—C120.1 (3)
C4—C9—C10—C11.9 (2)N2—C16—C17—C12176.74 (16)
C8—C9—C10—C113.7 (3)C11—N1—C18—O41.4 (3)
C4—C9—C10—C11177.17 (16)C11—N1—C18—O41.4 (3)
C18—N1—C11—C10114.89 (18)C11—N1—C18—C19179.39 (19)
C18—N1—C11—C12118.37 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.872.646 (2)158
N1—H1A···O2ii0.862.353.167 (2)160
C11—H11···O40.982.282.739 (2)107
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H16N2O4
Mr336.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5261 (4), 8.8635 (5), 13.3008 (7)
α, β, γ (°)74.720 (3), 73.754 (3), 82.600 (3)
V3)820.27 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9406, 3864, 2227
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 0.99
No. of reflections3864
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.872.646 (2)158.0
N1—H1A···O2ii0.862.353.167 (2)160.1
C11—H11···O40.982.282.739 (2)107.4
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College, Chennai, India, for providing the computer and internet facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevi, I. & Bhuyan, P. J. (2004). Tetrahedron Lett. 45, 8625–8627.  Web of Science CrossRef CAS Google Scholar
First citationDomling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694–o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444–o445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaravanakumar, D., Sengottuvelan, N. & Kandaswamy, M. (2005). Inorg. Chem. Commun. 8, 386–389.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, Z., Yang, Z., He, J. & Cheng, J. P. (2004). Tetrahedron Lett. 45, 6803–6806.  Web of Science CSD CrossRef CAS Google Scholar
First citationZia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o714-o715
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds