metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m464-m465

Di­aqua­[N,N′-bis­­(3-carb­oxy­prop-2-enoyl)pyridine-2,6-dicarbo­hydrazidato(2–)]cadmium(II) N,N-di­methyl­formamide disolvate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 18 February 2009; accepted 25 March 2009; online 31 March 2009)

In the title complex, [Cd(C15H11N5O8)(H2O)2]·2C3H7NO, the CdII ion is located on a twofold rotation axis and is seven-coordinated in a distorted penta­gonal-bipyramidal manner. The asymmetric unit comprises one metal ion, one doubly deprotonated N,N′-bis­(3-carboxy­prop-2-eno­yl)pyridine-2,6-dicarbohydrazide ligand, two coordinating water mol­ecules and two dimethyl­formamide solvent mol­ecules. In the crystal, a two-dimensional network is formed through N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For polydimensional supermolecular architectures formed by aromatic hydrazides through hydrogen bonds and ππ inter­actions, see: Bacchi et al. (1993[Bacchi, A., Battaglia, L. P., Carcelli, M., Pelizzi, C., Pelizzi, G., Solinas, C. & Zoroddu, M. A. (1993). J. Chem. Soc. Dalton Trans. pp. 775-779.]); Bermejo et al. (1999[Bermejo, M. R., Fondo, M., González, A. M., Hoyos, O. L., Sousa, A., McAuliffe, C. A., Hussain, W., Pritchard, R. & Novotorsev, V. M. (1999). J. Chem. Soc. Dalton. Trans. pp. 2211-2218.]). The condensation products of 2,6-picolylhydrazide with anhydrides have been found to adopt a penta­gonal-bipyramidal coordination in various metal complexes, see: Pelizzi et al. (1987[Pelizzi, C., Pelizzi, G. & Vitali, F. (1987). J. Chem. Soc. Dalton Trans. pp. 177-181.]); Wang et al. (2005[Wang, C. X., Du, C. X., Li, Y. H. & Wu, Y. J. (2005). Inorg. Chem. Commun. 8, 379-381.]). For the chelating behaviour of N,N′-acetyl-2,6-picolylhydrazide with Fe3+, see: Cao et al. (2008[Cao, Q.-F., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2008). Acta Cryst. E64, m47.]). For our continuing study of aroylhydrazides, see: Dou et al. (2006[Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. pp. 4866-4871.]). For Cd—O(carbon­yl) bond lengths in other seven-coordinated penta­gonal-bipyramidal cadmium complexes, see: Charles et al. (1983[Charles, N. G., Griffith, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983). Inorg. Chem. 22, 2717-2723.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C15H11N5O8)(H2O)2]·2C3H7NO

  • Mr = 683.91

  • Monoclinic, C 2/c

  • a = 18.6176 (2) Å

  • b = 12.6065 (8) Å

  • c = 12.0038 (6) Å

  • β = 99.51°

  • V = 2778.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.847, Tmax = 0.868

  • 6846 measured reflections

  • 2448 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.00

  • 2448 reflections

  • 189 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2i 2.287 (2)
Cd1—O5i 2.3412 (19)
Cd1—N1 2.387 (3)
Cd1—O2i 2.4441 (19)
N2—N3 1.369 (3)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4ii 0.85 1.97 2.802 (3) 165
O5—H5B⋯O1iii 0.85 1.84 2.685 (3) 174
N3—H3A⋯O6 0.86 1.97 2.808 (3) 163
O3—H3⋯O2 0.82 1.68 2.498 (3) 175
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Containing N, O and other coordinating sites, aromatic hydrazides can form poly-dimensional supermolecular architectures through hydrogen bonds and π-π interactions (Bacchi et al., 1993, Bermejo et al., 1999). The condensation products of 2,6-picolylhydrazide with anhydrides have been found to adopt a pentagonal-bipyramidal stereochemistry in various metal complexes, in which they may participate as neutral and/or dianionic ligands (Pelizzi, et al., 1987, Wang et al., 2005). Previously we have examined the chelating behaviour of N,N'-acetyl-2,6-picolylhydrazide with Fe3+ (Cao, et al., 2008). As a part of continuing study of our research on aroylhydrazide in our laboratory (Dou, et al., 2006), we synthesized N,N'-bis(3-carboxy-cis-propenoyl)- 2,6-picolyldihydrazide and obtained its Cd(II) complex (I).

The molecular structure of the complex (Fig. 1) and its characteristic geometry parameteres (Table 1) reveal one cadmium ion which is located on the 2-fold rotation axis, one deprotonated ligand, two coordinated H2O molecules and two solvent DMF molecules. The divalent anionic H2L2- acts as a pentadentate chelating ligand to two cadmium atoms.The remainder coordinating sites of Cd2+ are occupied by two O atoms from water molecules in trans-positions which complete the seven-coordinated pentagonal- bipyramid. Two deprotonated amide nitrogen atoms, two carbonyl O atoms, one pyridine N atom complete the equatorial plane and the mean deviation is 0.0064 Å indicating that the five atoms are ideally coplanar. Such planarity was observed in [Cd(H2daps)Cl2](CHCl3)(CH3OH) (less than 0.007 Å) (H2daps = 2,6-diacetylpridine bis(salicyloylhydrazone) (Pelizzi, et al., 1987). The Cd—N distances are in the range of 2.287 (2) Å to 2.387 (3) Å; its average value of 2.320 (2) Å is shorter than those observed in [Cd(L')(1.5H2O)]n (L' = N,N'-bis(4-pyridylcarboxyl)- 2,6-pyridine dicarbohydrazide) (Wang et al., 2005) and [Cd(H2daps)Cl2](CHCl3)(CH3OH) (Pelizzi, et al., 1987). Both, two Cd—O(carbonyl) bond lengths (2.4441 (19) Å) are comparable to those in other seven-coordinated pentagonal-bipyramidal cadmium complexes (Charles et al., 1983). The Cd—O (water) distance is 2.341 (2) Å, being shorter than the mean lengths of Cd—O in the the equatorial plane of 2.444 (19) Å.

The crystal structure of the title complex is predominantly determined by N—H···O and O—H···O hydrogen bonds (Table 2 and Fig. 2) generating 2-D network.

Related literature top

For polydimensional supermolecular architectures formed by aromatic hydrazides through hydrogen bonds and ππ interactions, see: Bacchi et al. (1993); Bermejo et al. (1999). The condensation products of 2,6-picolylhydrazide with anhydrides have been found to adopt a pentagonal-bipyramidal stereochemistry in various metal complexes, see: Pelizzi et al. (1987); Wang et al. (2005). For the chelating behaviour of N,N'-acetyl-2,6-picolylhydrazide with Fe3+, see: Cao et al. (2008). For our continuing study of aroylhydrazides, see: Dou et al. (2006). For Cd—O(carbonyl) bond lengths in other seven-coordinated pentagonal-bipyramidal cadmium complexes, see: Charles et al. (1983).

Experimental top

All chemicals were of reagent grade and were used without further purification. A solution of cadmium nitrate tetrahydrate (2 mmol, 0.457 g) dissolved in methanol (10 ml) was added dropwise to a DMF solution containing the ligand (2 mmol, 0.783 g). The mixture was stirred at room temperature for 6 h and then filtered.The filtrate was left to evaporate slowly at room temperature and yellow block-shaped crystals suitable for X-ray diffraction analysis were obtained after three weeks (m.p. >573 K). Elemental analysis calculated for (I): C: 36.88, H: 4.27, N: 14.34%; found: C: 36.11, H: 4.66, N: 14.02%. IR (KBr pellet, cm-1): 3467 (O—H), 3134 (N—H), 1709 (C=O) (acid carboxyl segment), 1647 (C=C).

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with pyridine C—H distances of 0.930 Å, hydrazide N—H distances of 0.860 Å, alkene C–H distances of 0.930 Å, methyl C—H distances of 0.960 Å, and with Uiso(H) = 1.2 Ueq(C,O) and 1.5 Ueq for methyl and hydroxy groups.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular stucture of the complex (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: -x + 1,y,-z + 3/2]
[Figure 2] Fig. 2. Part of the crystal structure of the complex, showing hydrogen bonds as dashed lines. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1].
Diaqua[N,N'-bis(3-carboxyprop-2-enoyl)pyridine-2,6- dicarbohydrazidato(2-)]cadmium(II) N,N-dimethylformamide disolvate top
Crystal data top
[Cd(C15H11N5O8)(H2O)2]·2C3H7NOF(000) = 1392
Mr = 683.91Dx = 1.635 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3321 reflections
a = 18.6176 (2) Åθ = 2.5–27.6°
b = 12.6065 (8) ŵ = 0.86 mm1
c = 12.0038 (6) ÅT = 298 K
β = 99.51°Block, yellow
V = 2778.6 (2) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2448 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.847, Tmax = 0.868k = 148
6846 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0426P)2 + 1.9365P]
where P = (Fo2 + 2Fc2)/3
2448 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cd(C15H11N5O8)(H2O)2]·2C3H7NOV = 2778.6 (2) Å3
Mr = 683.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.6176 (2) ŵ = 0.86 mm1
b = 12.6065 (8) ÅT = 298 K
c = 12.0038 (6) Å0.20 × 0.18 × 0.17 mm
β = 99.51°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2071 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.868Rint = 0.028
6846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.00Δρmax = 0.73 e Å3
2448 reflectionsΔρmin = 0.48 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.32546 (2)0.75000.03647 (12)
N10.50000.5148 (2)0.75000.0315 (7)
N20.56574 (12)0.39595 (18)0.62292 (19)0.0356 (5)
N30.59654 (12)0.32818 (17)0.55520 (19)0.0346 (5)
H3A0.62040.35190.50490.042*
N40.73608 (14)0.4660 (2)0.2710 (2)0.0474 (6)
O10.60699 (11)0.53782 (16)0.53204 (17)0.0457 (5)
O20.55458 (11)0.18980 (15)0.64485 (17)0.0413 (5)
O30.55912 (13)0.00807 (17)0.6368 (2)0.0596 (6)
H30.55740.05660.64350.089*
O40.60364 (16)0.12393 (19)0.5313 (2)0.0733 (8)
O50.39670 (11)0.29907 (15)0.61261 (16)0.0420 (5)
H5A0.39880.23960.58000.050*
H5B0.39670.34750.56340.050*
O60.68682 (14)0.3634 (2)0.3932 (2)0.0656 (7)
C10.57294 (15)0.4982 (2)0.6033 (2)0.0345 (6)
C20.53537 (14)0.5671 (2)0.6791 (2)0.0340 (6)
C30.53679 (16)0.6767 (2)0.6772 (3)0.0403 (7)
H3B0.56190.71270.62800.048*
C40.50000.7315 (3)0.75000.0414 (10)
H40.50000.80530.75000.050*
C50.58854 (14)0.2254 (2)0.5694 (2)0.0336 (6)
C60.62026 (18)0.1570 (2)0.4921 (3)0.0460 (8)
H60.64380.19210.44030.055*
C70.62029 (19)0.0514 (2)0.4854 (3)0.0523 (8)
H70.64190.02540.42640.063*
C80.59292 (18)0.0317 (2)0.5527 (3)0.0483 (8)
C90.70087 (17)0.4503 (3)0.3561 (3)0.0519 (8)
H90.68540.51000.39100.062*
C100.75008 (19)0.5723 (3)0.2334 (3)0.0612 (10)
H10A0.72600.62300.27410.092*
H10B0.73200.57860.15400.092*
H10C0.80160.58560.24720.092*
C110.7598 (2)0.3769 (3)0.2101 (3)0.0672 (10)
H11A0.74650.31190.24310.101*
H11B0.81170.37960.21430.101*
H11C0.73680.38010.13250.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0481 (2)0.02519 (17)0.03978 (19)0.0000.01812 (13)0.000
N10.0379 (17)0.0217 (16)0.0355 (18)0.0000.0083 (14)0.000
N20.0455 (13)0.0251 (12)0.0391 (14)0.0013 (10)0.0155 (11)0.0008 (10)
N30.0424 (13)0.0293 (13)0.0351 (13)0.0007 (10)0.0150 (10)0.0013 (10)
N40.0528 (15)0.0427 (15)0.0515 (16)0.0070 (12)0.0226 (13)0.0104 (12)
O10.0627 (13)0.0346 (12)0.0450 (12)0.0011 (10)0.0240 (10)0.0079 (9)
O20.0546 (12)0.0284 (11)0.0466 (12)0.0010 (9)0.0247 (10)0.0009 (9)
O30.0866 (17)0.0307 (12)0.0707 (16)0.0033 (11)0.0394 (14)0.0011 (11)
O40.116 (2)0.0311 (14)0.0787 (19)0.0008 (13)0.0324 (16)0.0118 (12)
O50.0580 (12)0.0299 (10)0.0391 (11)0.0008 (9)0.0109 (9)0.0010 (9)
O60.0778 (17)0.0552 (15)0.0728 (17)0.0020 (13)0.0393 (14)0.0140 (13)
C10.0398 (15)0.0314 (16)0.0321 (15)0.0003 (12)0.0055 (12)0.0047 (12)
C20.0387 (15)0.0285 (15)0.0346 (15)0.0005 (12)0.0053 (12)0.0035 (12)
C30.0521 (17)0.0254 (15)0.0437 (17)0.0033 (13)0.0093 (14)0.0056 (12)
C40.058 (3)0.020 (2)0.047 (3)0.0000.008 (2)0.000
C50.0384 (15)0.0285 (16)0.0358 (16)0.0001 (12)0.0119 (12)0.0030 (12)
C60.0576 (19)0.0354 (18)0.0506 (19)0.0015 (14)0.0253 (15)0.0005 (14)
C70.069 (2)0.0397 (19)0.054 (2)0.0049 (16)0.0299 (17)0.0071 (15)
C80.064 (2)0.0311 (18)0.0510 (19)0.0008 (14)0.0121 (16)0.0051 (14)
C90.0539 (19)0.050 (2)0.056 (2)0.0015 (16)0.0210 (16)0.0046 (16)
C100.062 (2)0.054 (2)0.072 (3)0.0002 (17)0.0235 (19)0.0211 (19)
C110.079 (3)0.060 (2)0.069 (3)0.012 (2)0.032 (2)0.004 (2)
Geometric parameters (Å, º) top
Cd1—N2i2.287 (2)O5—H5A0.8500
Cd1—N22.287 (2)O5—H5B0.8500
Cd1—O5i2.3412 (19)O6—C91.227 (4)
Cd1—O52.3412 (19)C1—C21.511 (4)
Cd1—N12.387 (3)C2—C31.382 (4)
Cd1—O2i2.4441 (19)C3—C41.382 (4)
Cd1—O22.4441 (19)C3—H3B0.9300
N1—C2i1.334 (3)C4—C3i1.382 (4)
N1—C21.334 (3)C4—H40.9300
N2—C11.321 (4)C5—C61.460 (4)
N2—N31.369 (3)C6—C71.335 (4)
N3—C51.319 (3)C6—H60.9300
N3—H3A0.8600C7—C81.465 (4)
N4—C91.316 (4)C7—H70.9300
N4—C111.448 (4)C9—H90.9300
N4—C101.452 (4)C10—H10A0.9600
O1—C11.250 (3)C10—H10B0.9600
O2—C51.269 (3)C10—H10C0.9600
O3—C81.309 (4)C11—H11A0.9600
O3—H30.8200C11—H11B0.9600
O4—C81.214 (4)C11—H11C0.9600
N2i—Cd1—N2134.27 (11)O1—C1—C2121.3 (2)
N2i—Cd1—O5i93.05 (8)N2—C1—C2112.5 (2)
N2—Cd1—O5i93.28 (8)N1—C2—C3121.2 (3)
N2i—Cd1—O593.28 (8)N1—C2—C1115.2 (2)
N2—Cd1—O593.05 (8)C3—C2—C1123.6 (3)
O5i—Cd1—O5163.66 (9)C4—C3—C2118.5 (3)
N2i—Cd1—N167.13 (6)C4—C3—H3B120.8
N2—Cd1—N167.13 (6)C2—C3—H3B120.8
O5i—Cd1—N198.17 (5)C3i—C4—C3120.0 (4)
O5—Cd1—N198.17 (5)C3i—C4—H4120.0
N2i—Cd1—O2i67.27 (7)C3—C4—H4120.0
N2—Cd1—O2i158.46 (8)O2—C5—N3121.3 (2)
O5i—Cd1—O2i84.26 (7)O2—C5—C6123.1 (2)
O5—Cd1—O2i84.33 (7)N3—C5—C6115.6 (2)
N1—Cd1—O2i134.40 (4)C7—C6—C5129.2 (3)
N2i—Cd1—O2158.46 (8)C7—C6—H6115.4
N2—Cd1—O267.27 (7)C5—C6—H6115.4
O5i—Cd1—O284.33 (7)C6—C7—C8132.6 (3)
O5—Cd1—O284.26 (7)C6—C7—H7113.7
N1—Cd1—O2134.40 (4)C8—C7—H7113.7
O2i—Cd1—O291.20 (9)O4—C8—O3119.9 (3)
C2i—N1—C2120.7 (3)O4—C8—C7118.9 (3)
C2i—N1—Cd1119.64 (16)O3—C8—C7121.2 (3)
C2—N1—Cd1119.64 (16)O6—C9—N4125.4 (3)
C1—N2—N3116.0 (2)O6—C9—H9117.3
C1—N2—Cd1125.41 (19)N4—C9—H9117.3
N3—N2—Cd1118.45 (16)N4—C10—H10A109.5
C5—N3—N2118.0 (2)N4—C10—H10B109.5
C5—N3—H3A121.0H10A—C10—H10B109.5
N2—N3—H3A121.0N4—C10—H10C109.5
C9—N4—C11120.5 (3)H10A—C10—H10C109.5
C9—N4—C10121.2 (3)H10B—C10—H10C109.5
C11—N4—C10118.3 (3)N4—C11—H11A109.5
C5—O2—Cd1114.84 (16)N4—C11—H11B109.5
C8—O3—H3109.5H11A—C11—H11B109.5
Cd1—O5—H5A110.8N4—C11—H11C109.5
Cd1—O5—H5B107.1H11A—C11—H11C109.5
H5A—O5—H5B108.0H11B—C11—H11C109.5
O1—C1—N2126.2 (3)
N2i—Cd1—N1—C2i0.87 (14)O5—Cd1—O2—C592.38 (19)
N2—Cd1—N1—C2i179.13 (14)N1—Cd1—O2—C53.4 (2)
O5i—Cd1—N1—C2i89.00 (14)O2i—Cd1—O2—C5176.6 (2)
O5—Cd1—N1—C2i91.00 (14)N3—N2—C1—O12.6 (4)
O2i—Cd1—N1—C2i0.95 (15)Cd1—N2—C1—O1177.9 (2)
O2—Cd1—N1—C2i179.05 (15)N3—N2—C1—C2178.2 (2)
N2i—Cd1—N1—C2179.13 (14)Cd1—N2—C1—C22.8 (3)
N2—Cd1—N1—C20.87 (14)C2i—N1—C2—C30.3 (2)
O5i—Cd1—N1—C291.00 (14)Cd1—N1—C2—C3179.7 (2)
O5—Cd1—N1—C289.00 (14)C2i—N1—C2—C1179.9 (2)
O2i—Cd1—N1—C2179.05 (15)Cd1—N1—C2—C10.1 (2)
O2—Cd1—N1—C20.95 (15)O1—C1—C2—N1179.0 (2)
N2i—Cd1—N2—C12.1 (2)N2—C1—C2—N11.7 (3)
O5i—Cd1—N2—C199.6 (2)O1—C1—C2—C31.2 (4)
O5—Cd1—N2—C195.5 (2)N2—C1—C2—C3178.1 (3)
N1—Cd1—N2—C12.1 (2)N1—C2—C3—C40.6 (4)
O2i—Cd1—N2—C1177.7 (2)C1—C2—C3—C4179.6 (2)
O2—Cd1—N2—C1178.0 (3)C2—C3—C4—C3i0.29 (19)
N2i—Cd1—N2—N3177.3 (2)Cd1—O2—C5—N33.8 (3)
O5i—Cd1—N2—N385.19 (19)Cd1—O2—C5—C6175.4 (2)
O5—Cd1—N2—N379.74 (19)N2—N3—C5—O21.3 (4)
N1—Cd1—N2—N3177.3 (2)N2—N3—C5—C6177.9 (2)
O2i—Cd1—N2—N32.5 (3)O2—C5—C6—C70.1 (5)
O2—Cd1—N2—N32.74 (17)N3—C5—C6—C7179.3 (4)
C1—N2—N3—C5177.8 (2)C5—C6—C7—C83.2 (7)
Cd1—N2—N3—C52.1 (3)C6—C7—C8—O4176.1 (4)
N2i—Cd1—O2—C5176.8 (2)C6—C7—C8—O32.0 (6)
N2—Cd1—O2—C53.36 (18)C11—N4—C9—O62.1 (5)
O5i—Cd1—O2—C599.33 (19)C10—N4—C9—O6180.0 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.851.972.802 (3)165
O5—H5B···O1iii0.851.842.685 (3)174
N3—H3A···O60.861.972.808 (3)163
O3—H3···O20.821.682.498 (3)175
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C15H11N5O8)(H2O)2]·2C3H7NO
Mr683.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.6176 (2), 12.6065 (8), 12.0038 (6)
β (°) 99.51
V3)2778.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.847, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
6846, 2448, 2071
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.00
No. of reflections2448
No. of parameters189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N2i2.287 (2)N2—C11.321 (4)
Cd1—O5i2.3412 (19)N2—N31.369 (3)
Cd1—N12.387 (3)N3—C51.319 (3)
Cd1—O2i2.4441 (19)O2—C51.269 (3)
N1—C2i1.334 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.851.972.802 (3)165.2
O5—H5B···O1iii0.851.842.685 (3)173.8
N3—H3A···O60.861.972.808 (3)163.0
O3—H3···O20.821.682.498 (3)174.8
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the Natural Science Foundation of China (grant No. 20671048).

References

First citationBacchi, A., Battaglia, L. P., Carcelli, M., Pelizzi, C., Pelizzi, G., Solinas, C. & Zoroddu, M. A. (1993). J. Chem. Soc. Dalton Trans. pp. 775–779.  CSD CrossRef Web of Science Google Scholar
First citationBermejo, M. R., Fondo, M., González, A. M., Hoyos, O. L., Sousa, A., McAuliffe, C. A., Hussain, W., Pritchard, R. & Novotorsev, V. M. (1999). J. Chem. Soc. Dalton. Trans. pp. 2211–2218.  Web of Science CSD CrossRef Google Scholar
First citationCao, Q.-F., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2008). Acta Cryst. E64, m47.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCharles, N. G., Griffith, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983). Inorg. Chem. 22, 2717–2723.  CSD CrossRef CAS Web of Science Google Scholar
First citationDou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. pp. 4866–4871.  Web of Science CSD CrossRef Google Scholar
First citationPelizzi, C., Pelizzi, G. & Vitali, F. (1987). J. Chem. Soc. Dalton Trans. pp. 177–181.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, C. X., Du, C. X., Li, Y. H. & Wu, Y. J. (2005). Inorg. Chem. Commun. 8, 379–381.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m464-m465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds