organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o745-o746

2-(1H-Benzoimidazol-2-yl)-6-eth­oxy­phenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 2 March 2009; accepted 5 March 2009; online 14 March 2009)

The title Schiff base compound, C15H14N2O2, consists of two crystallographically independent mol­ecules, A and B. Mol­ecule A is almost planar, whereas mol­ecule B is slightly twisted, the dihedral angles between the benzimidazole group and the benzene rings being 2.65 (12) and 13.17 (15)°, respectively. The methyl group of mol­ecule B is disordered over two positions, with a refined site-occupancy ratio of 0.581 (7):0.419 (7). In each mol­ecule, intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. In the crystal structure, both types of mol­ecules are linked via inter­molecular bifurcated N—H⋯O hydrogen bonds into one-dimensional extended chains along [010] and form R12(5) ring motifs. The crystal structure is further stabilized by inter­molecular C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.4758 (16)–3.596 (2) Å].

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For benzimidazole chemistry, reaction mechanisms and bioactivity, see, for example: Latif et al. (1983[Latif, N., Mishriky, N. & Assad, F. M. (1983). Recl Trav. Chim. Pays-Bas, 102, 73-77.]); Craigo et al. (1999[Craigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem. 42, 3324-3333.]); Gudmundsson et al. (2000[Gudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464-2472.]); Trivedi et al.(2006[Trivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A Chem. 245, 8-11.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Ramla et al. (2006[Ramla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem. 14, 7324-7332.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Monoclinic, C 2/c

  • a = 22.5305 (4) Å

  • b = 12.0113 (2) Å

  • c = 21.4241 (3) Å

  • β = 120.449 (1)°

  • V = 4998.17 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.38 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.984

  • 49947 measured reflections

  • 5171 independent reflections

  • 4238 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.151

  • S = 1.19

  • 5171 reflections

  • 372 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.91 (4) 1.67 (4) 2.557 (4) 164 (4)
N2A—H1NA⋯O1B 0.81 (4) 2.14 (4) 2.865 (3) 149 (3)
N2A—H1NA⋯O2B 0.81 (4) 2.57 (4) 3.199 (3) 136 (3)
O1B—H1OB⋯N1B 0.97 (4) 1.67 (4) 2.567 (3) 151 (3)
N2B—H1NB⋯O1Ai 0.94 (4) 1.95 (4) 2.877 (3) 167 (4)
N2B—H1NB⋯O2Ai 0.94 (4) 2.55 (4) 3.136 (3) 121 (3)
C4A—H4AACg1ii 0.93 2.80 3.590 (4) 143
C14B—H14CCg2iii 0.97 2.84 3.721 (5) 152
C15B—H15DCg3iv 0.96 2.76 3.715 (8) 176
Symmetry codes: (i) [-x, y+1, -z+{\script{1\over 2}}]; (ii) [x, -y-1, z-{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]. Cg1, Cg2 and Cg3 are the centroids of the C8B–C13B, C1B–C6B and N1A–C1A–C6A–N2A–C7A rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles are used widely in biological applications and as pharmaceutical agents (Craigo et al., 1999; Gudmundsson et al., 2000; Trivedi et al., 2006). They are also used as topoisomerase I inhibitors (Kim et al., 1996) and for antitumor activity (Ramla et al., 2006). Due to these important applications, many synthetic routes towards benzimidazoles have been developed. They can, for example, be synthesized by the reaction of phenolic aldehydes with o-phenylenediamine (Latif et al.,, 1983). Based on this route the title compound was synthesized and its crystal structure is reported here.

The asymmetric unit of the title compound, Fig. 1, consists of two crystallographically independent molecules, A and B with a slightly different conformations due to a disordered group. Intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The two molecules A and B are linked together by a bifurcated hydrogen bond involving the two oxygen atoms of the hydroxy and ethoxy groups with a R12(5) ring motif. The molecule A is almost planar wheares the molecule B is slightly twisted with the dihedral angles between the benzimidazole and the phenyl rings being 2.65 (12) and 13.17 (15) °, respectively. The methyl group of molecule B is disordered over two positions with a refined site-occupancy ratio of 0.581 (7):0.419 (7). The crystal structure is further stabilized by intermolecular C—H···π [Cg1, Cg2 and Cg3 are the centroids of the C8B–C13B, C1B–C6B and N1A/C1A/C6A/N2A/C7A rings] (Table 1) and π-π interactions [Cg1···Cg4iii = 3.596 (2) and Cg3···Cg5iii = 3.4758 (16) Å; (iii) -x, y, 1/2 - z ; Cg4 and Cg5 are the centroids of the N1B/C1B/C6B/N2B/C7B and C8A–C13A rings]. In the crystal structure, molecules are linked together into 1-D extended chains along the [0 1 0] direction (Fig. 2).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For benzimidazole chemistry, reaction mechanisms and bioactivity, see, for example: Latif et al. (1983); Craigo et al. (1999); Gudmundsson et al. (2000); Trivedi et al.(2006); Kim et al. (1996); Ramla et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1, Cg2 and Cg3 are the centroids of the C8B–C13B, C1B–C6B and N1A–C1A–C6A–N2A–C7A rings, respectively.

Experimental top

An ethanolic solution (50 ml) of 3-ethoxy-salicylaldehyde (2 mmol, 332 mg) was added to 1,2-phenylenediamine (1 mmol, 217 mg). The mixture was refluxed for 2 h, and cooled to room temperature. The resulting colourless powder was filtered, washed with cooled ethanol and dried in vacuo. Single crystals suitable for X-ray diffraction were obtained from an methanol solution at room temperature.

Refinement top

O1A, O1B and N-bound hydrogen atoms were located from the diffrence Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically with a riding model approximation with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 (C & O). A rotating group model was used for methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intra- and intermolecular hydrogen bonds are shown as dashed lines. The open bond indicates the minor component of disorder.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. The disorder is not shown and only H atoms involved in hydrogen bonds are drawn.
2-(1H-Benzoimidazol-2-yl)-6-ethoxyphenol top
Crystal data top
C15H14N2O2F(000) = 2144
Mr = 254.28Dx = 1.352 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9961 reflections
a = 22.5305 (4) Åθ = 2.5–32.2°
b = 12.0113 (2) ŵ = 0.09 mm1
c = 21.4241 (3) ÅT = 100 K
β = 120.449 (1)°Block, yellow
V = 4998.17 (14) Å30.38 × 0.23 × 0.18 mm
Z = 16
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5171 independent reflections
Radiation source: fine-focus sealed tube4238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2828
Tmin = 0.966, Tmax = 0.984k = 1415
49947 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.022P)2 + 16.3221P]
where P = (Fo2 + 2Fc2)/3
5171 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
C15H14N2O2V = 4998.17 (14) Å3
Mr = 254.28Z = 16
Monoclinic, C2/cMo Kα radiation
a = 22.5305 (4) ŵ = 0.09 mm1
b = 12.0113 (2) ÅT = 100 K
c = 21.4241 (3) Å0.38 × 0.23 × 0.18 mm
β = 120.449 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5171 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4238 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.984Rint = 0.043
49947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.022P)2 + 16.3221P]
where P = (Fo2 + 2Fc2)/3
5171 reflectionsΔρmax = 0.57 e Å3
372 parametersΔρmin = 0.48 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.04313 (11)0.05359 (15)0.34802 (11)0.0343 (5)
O2A0.04669 (10)0.05371 (16)0.38878 (11)0.0352 (5)
N1A0.12309 (11)0.04703 (18)0.31444 (12)0.0278 (5)
N2A0.12918 (13)0.2321 (2)0.31223 (14)0.0328 (5)
C1A0.16902 (14)0.0757 (2)0.29195 (14)0.0280 (6)
C2A0.20683 (15)0.0094 (2)0.27078 (16)0.0345 (6)
H2AA0.20470.06780.27140.041*
C3A0.24743 (16)0.0632 (3)0.24891 (17)0.0389 (7)
H3AA0.27310.02090.23460.047*
C4A0.25106 (16)0.1776 (3)0.24763 (18)0.0413 (7)
H4AA0.27920.21040.23260.050*
C5A0.21403 (16)0.2450 (3)0.26805 (17)0.0408 (7)
H5AA0.21650.32220.26700.049*
C6A0.17291 (14)0.1923 (2)0.29023 (15)0.0318 (6)
C7A0.09976 (13)0.1427 (2)0.32507 (13)0.0267 (5)
C8A0.04901 (13)0.1485 (2)0.34835 (14)0.0257 (5)
C9A0.02514 (14)0.2496 (2)0.36000 (15)0.0319 (6)
H9AA0.04240.31650.35400.038*
C10A0.02370 (15)0.2501 (2)0.38028 (16)0.0362 (7)
H10A0.03980.31750.38730.043*
C11A0.04945 (14)0.1499 (2)0.39045 (15)0.0328 (6)
H11A0.08240.15110.40430.039*
C12A0.02616 (14)0.0499 (2)0.38002 (14)0.0290 (6)
C13A0.02312 (13)0.0480 (2)0.35843 (13)0.0255 (5)
C14A0.09118 (15)0.0595 (3)0.41821 (17)0.0405 (7)
H14A0.13460.02300.38630.049*
H14B0.07000.02370.46520.049*
C15A0.10244 (18)0.1825 (3)0.4250 (2)0.0546 (9)
H15A0.13080.19110.44630.082*
H15B0.05880.21810.45530.082*
H15C0.12480.21630.37790.082*
O1B0.08605 (12)0.45323 (16)0.25795 (12)0.0409 (5)
O2B0.17852 (13)0.46703 (18)0.39287 (12)0.0530 (6)
N1B0.00726 (12)0.54159 (19)0.13347 (13)0.0332 (5)
N2B0.01822 (12)0.72236 (19)0.12353 (13)0.0303 (5)
C1B0.04540 (15)0.5626 (2)0.06352 (16)0.0335 (6)
C2B0.08028 (17)0.4918 (3)0.00407 (17)0.0438 (8)
H2BA0.06920.41660.00750.053*
C3B0.13164 (17)0.5368 (3)0.06005 (17)0.0461 (8)
H3BA0.15480.49120.10050.055*
C4B0.14955 (16)0.6492 (3)0.06553 (17)0.0448 (8)
H4BA0.18520.67620.10920.054*
C5B0.11554 (16)0.7216 (3)0.00752 (17)0.0393 (7)
H5BA0.12740.79650.01120.047*
C6B0.06268 (14)0.6763 (2)0.05654 (15)0.0313 (6)
C7B0.02231 (14)0.6394 (2)0.16742 (15)0.0295 (6)
C8B0.07626 (14)0.6529 (2)0.24254 (15)0.0286 (6)
C9B0.10079 (14)0.7581 (2)0.27454 (16)0.0303 (6)
H9BA0.08190.82240.24750.036*
C10B0.15256 (15)0.7658 (2)0.34562 (16)0.0332 (6)
H10B0.16880.83560.36600.040*
C11B0.18127 (16)0.6703 (2)0.38783 (16)0.0357 (7)
H11B0.21650.67640.43580.043*
C12B0.15684 (16)0.5670 (2)0.35757 (16)0.0368 (7)
C13B0.10542 (15)0.5578 (2)0.28474 (16)0.0319 (6)
C14B0.2276 (2)0.4683 (3)0.46948 (18)0.0576 (10)
H14C0.20900.50880.49490.069*0.581 (7)
H14D0.26980.50460.47880.069*0.581 (7)
H14E0.22180.40280.49150.069*0.419 (7)
H14F0.22080.53230.49200.069*0.419 (7)
C15B0.2415 (4)0.3527 (6)0.4943 (4)0.070 (2)0.581 (7)
H15D0.27340.35100.54560.104*0.581 (7)
H15E0.26090.31390.46970.104*0.581 (7)
H15F0.19930.31720.48410.104*0.581 (7)
C15C0.2967 (3)0.4728 (8)0.4792 (5)0.063 (3)0.419 (7)
H15G0.33030.47390.53000.095*0.419 (7)
H15H0.30120.53900.45680.095*0.419 (7)
H15I0.30390.40850.45730.095*0.419 (7)
H1OA0.0731 (18)0.030 (3)0.3339 (18)0.052 (10)*
H1NA0.1191 (17)0.297 (3)0.3128 (18)0.048 (10)*
H1OB0.0555 (19)0.462 (3)0.206 (2)0.061 (11)*
H1NB0.0186 (17)0.797 (3)0.1365 (18)0.052 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0431 (12)0.0193 (9)0.0518 (13)0.0025 (8)0.0323 (11)0.0009 (8)
O2A0.0383 (11)0.0298 (10)0.0448 (12)0.0082 (9)0.0264 (10)0.0019 (9)
N1A0.0325 (12)0.0206 (11)0.0335 (12)0.0002 (9)0.0191 (10)0.0002 (9)
N2A0.0359 (13)0.0209 (12)0.0431 (14)0.0007 (10)0.0210 (12)0.0060 (10)
C1A0.0303 (14)0.0240 (13)0.0278 (13)0.0017 (11)0.0133 (11)0.0029 (10)
C2A0.0376 (16)0.0281 (14)0.0389 (16)0.0001 (12)0.0202 (13)0.0017 (12)
C3A0.0388 (16)0.0428 (17)0.0399 (16)0.0019 (14)0.0236 (14)0.0032 (13)
C4A0.0374 (16)0.0426 (18)0.0490 (18)0.0001 (14)0.0256 (14)0.0123 (14)
C5A0.0425 (17)0.0315 (16)0.0520 (19)0.0031 (13)0.0265 (15)0.0102 (14)
C6A0.0302 (14)0.0306 (15)0.0331 (15)0.0008 (11)0.0149 (12)0.0082 (12)
C7A0.0263 (13)0.0243 (13)0.0247 (13)0.0020 (10)0.0092 (11)0.0019 (10)
C8A0.0277 (13)0.0202 (12)0.0259 (13)0.0006 (10)0.0111 (11)0.0019 (10)
C9A0.0359 (15)0.0231 (13)0.0357 (15)0.0007 (11)0.0174 (13)0.0030 (11)
C10A0.0429 (17)0.0242 (14)0.0427 (17)0.0071 (12)0.0226 (14)0.0007 (12)
C11A0.0321 (14)0.0343 (15)0.0339 (15)0.0000 (12)0.0182 (13)0.0027 (12)
C12A0.0287 (14)0.0277 (14)0.0273 (14)0.0035 (11)0.0117 (11)0.0006 (11)
C13A0.0288 (13)0.0202 (12)0.0246 (13)0.0017 (10)0.0115 (11)0.0000 (10)
C14A0.0353 (16)0.0524 (19)0.0362 (16)0.0049 (14)0.0199 (14)0.0054 (14)
C15A0.049 (2)0.059 (2)0.059 (2)0.0151 (17)0.0297 (18)0.0116 (18)
O1B0.0528 (13)0.0209 (10)0.0370 (12)0.0008 (9)0.0139 (10)0.0005 (8)
O2B0.0737 (17)0.0314 (12)0.0355 (12)0.0072 (11)0.0143 (12)0.0051 (9)
N1B0.0361 (13)0.0250 (12)0.0356 (13)0.0000 (10)0.0159 (11)0.0009 (10)
N2B0.0370 (13)0.0203 (11)0.0390 (13)0.0024 (10)0.0233 (11)0.0035 (10)
C1B0.0365 (15)0.0277 (14)0.0379 (16)0.0032 (12)0.0200 (13)0.0030 (12)
C2B0.0485 (19)0.0346 (17)0.0410 (17)0.0007 (14)0.0172 (15)0.0021 (13)
C3B0.0463 (18)0.0474 (19)0.0372 (17)0.0037 (15)0.0158 (15)0.0010 (14)
C4B0.0397 (17)0.055 (2)0.0370 (17)0.0017 (15)0.0172 (14)0.0107 (15)
C5B0.0436 (17)0.0351 (16)0.0449 (18)0.0063 (13)0.0265 (15)0.0145 (13)
C6B0.0328 (14)0.0309 (14)0.0370 (15)0.0007 (12)0.0228 (13)0.0043 (12)
C7B0.0326 (14)0.0255 (14)0.0380 (15)0.0012 (11)0.0234 (13)0.0011 (11)
C8B0.0314 (14)0.0243 (13)0.0384 (15)0.0001 (11)0.0237 (12)0.0023 (11)
C9B0.0370 (15)0.0202 (13)0.0438 (16)0.0021 (11)0.0278 (14)0.0009 (11)
C10B0.0397 (16)0.0238 (14)0.0452 (17)0.0052 (12)0.0282 (14)0.0108 (12)
C11B0.0402 (16)0.0329 (15)0.0348 (15)0.0002 (12)0.0196 (13)0.0061 (12)
C12B0.0462 (17)0.0288 (15)0.0373 (16)0.0029 (13)0.0225 (14)0.0005 (12)
C13B0.0383 (15)0.0231 (13)0.0390 (16)0.0022 (11)0.0230 (13)0.0051 (11)
C14B0.071 (3)0.046 (2)0.0390 (19)0.0051 (18)0.0161 (18)0.0034 (16)
C15B0.067 (5)0.070 (5)0.044 (4)0.014 (4)0.008 (3)0.013 (3)
C15C0.062 (6)0.049 (5)0.068 (6)0.014 (4)0.024 (5)0.009 (4)
Geometric parameters (Å, º) top
O1A—C13A1.358 (3)N1B—C7B1.332 (3)
O1A—H1OA0.91 (4)N1B—C1B1.384 (4)
O2A—C12A1.374 (3)N2B—C7B1.356 (3)
O2A—C14A1.431 (3)N2B—C6B1.383 (4)
N1A—C7A1.330 (3)N2B—H1NB0.94 (4)
N1A—C1A1.388 (3)C1B—C2B1.396 (4)
N2A—C7A1.361 (3)C1B—C6B1.407 (4)
N2A—C6A1.376 (4)C2B—C3B1.381 (4)
N2A—H1NA0.82 (4)C2B—H2BA0.9300
C1A—C2A1.399 (4)C3B—C4B1.397 (5)
C1A—C6A1.404 (4)C3B—H3BA0.9300
C2A—C3A1.381 (4)C4B—C5B1.387 (5)
C2A—H2AA0.9300C4B—H4BA0.9300
C3A—C4A1.378 (4)C5B—C6B1.393 (4)
C3A—H3AA0.9300C5B—H5BA0.9300
C4A—C5A1.383 (4)C7B—C8B1.453 (4)
C4A—H4AA0.9300C8B—C13B1.396 (4)
C5A—C6A1.390 (4)C8B—C9B1.410 (4)
C5A—H5AA0.9300C9B—C10B1.374 (4)
C7A—C8A1.463 (4)C9B—H9BA0.9300
C8A—C9A1.400 (4)C10B—C11B1.400 (4)
C8A—C13A1.404 (3)C10B—H10B0.9300
C9A—C10A1.373 (4)C11B—C12B1.378 (4)
C9A—H9AA0.9300C11B—H11B0.9300
C10A—C11A1.400 (4)C12B—C13B1.399 (4)
C10A—H10A0.9300C14B—C15C1.4633 (10)
C11A—C12A1.373 (4)C14B—C15B1.464 (7)
C11A—H11A0.9300C14B—H14C0.9700
C12A—C13A1.403 (4)C14B—H14D0.9700
C14A—C15A1.519 (5)C14B—H14E0.9599
C14A—H14A0.9700C14B—H14F0.9600
C14A—H14B0.9700C15B—H14E0.7332
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
O1B—C13B1.358 (3)C15C—H15G0.9600
O1B—H1OB0.97 (4)C15C—H15H0.9600
O2B—C12B1.370 (4)C15C—H15I0.9600
O2B—C14B1.441 (4)
C13A—O1A—H1OA98 (2)C3B—C2B—C1B118.0 (3)
C12A—O2A—C14A117.6 (2)C3B—C2B—H2BA121.0
C7A—N1A—C1A105.9 (2)C1B—C2B—H2BA121.0
C7A—N2A—C6A107.6 (2)C2B—C3B—C4B121.5 (3)
C7A—N2A—H1NA126 (2)C2B—C3B—H3BA119.3
C6A—N2A—H1NA126 (2)C4B—C3B—H3BA119.3
N1A—C1A—C2A130.9 (2)C5B—C4B—C3B121.7 (3)
N1A—C1A—C6A108.9 (2)C5B—C4B—H4BA119.1
C2A—C1A—C6A120.2 (3)C3B—C4B—H4BA119.1
C3A—C2A—C1A117.5 (3)C4B—C5B—C6B116.5 (3)
C3A—C2A—H2AA121.3C4B—C5B—H5BA121.8
C1A—C2A—H2AA121.3C6B—C5B—H5BA121.8
C4A—C3A—C2A121.9 (3)N2B—C6B—C5B132.4 (3)
C4A—C3A—H3AA119.0N2B—C6B—C1B105.2 (2)
C2A—C3A—H3AA119.0C5B—C6B—C1B122.4 (3)
C3A—C4A—C5A121.7 (3)N1B—C7B—N2B111.9 (2)
C3A—C4A—H4AA119.1N1B—C7B—C8B122.8 (2)
C5A—C4A—H4AA119.1N2B—C7B—C8B125.3 (2)
C4A—C5A—C6A117.1 (3)C13B—C8B—C9B118.6 (3)
C4A—C5A—H5AA121.5C13B—C8B—C7B118.8 (2)
C6A—C5A—H5AA121.5C9B—C8B—C7B122.7 (2)
N2A—C6A—C5A132.5 (3)C10B—C9B—C8B120.2 (3)
N2A—C6A—C1A105.8 (2)C10B—C9B—H9BA119.9
C5A—C6A—C1A121.6 (3)C8B—C9B—H9BA119.9
N1A—C7A—N2A111.8 (2)C9B—C10B—C11B121.0 (3)
N1A—C7A—C8A123.0 (2)C9B—C10B—H10B119.5
N2A—C7A—C8A125.2 (2)C11B—C10B—H10B119.5
C9A—C8A—C13A119.4 (2)C12B—C11B—C10B119.3 (3)
C9A—C8A—C7A122.6 (2)C12B—C11B—H11B120.3
C13A—C8A—C7A118.0 (2)C10B—C11B—H11B120.3
C10A—C9A—C8A120.2 (3)O2B—C12B—C11B125.7 (3)
C10A—C9A—H9AA119.9O2B—C12B—C13B114.1 (3)
C8A—C9A—H9AA119.9C11B—C12B—C13B120.2 (3)
C9A—C10A—C11A120.5 (3)O1B—C13B—C8B122.5 (3)
C9A—C10A—H10A119.8O1B—C13B—C12B116.8 (3)
C11A—C10A—H10A119.8C8B—C13B—C12B120.6 (3)
C12A—C11A—C10A120.2 (3)O2B—C14B—C15C108.0 (5)
C12A—C11A—H11A119.9O2B—C14B—C15B107.6 (4)
C10A—C11A—H11A119.9C15C—C14B—C15B88.1 (5)
C11A—C12A—O2A126.0 (2)O2B—C14B—H14C110.2
C11A—C12A—C13A120.0 (2)C15C—C14B—H14C129.3
O2A—C12A—C13A114.1 (2)C15B—C14B—H14C110.2
O1A—C13A—C12A117.0 (2)O2B—C14B—H14D110.2
O1A—C13A—C8A123.3 (2)C15B—C14B—H14D110.2
C12A—C13A—C8A119.8 (2)H14C—C14B—H14D108.5
O2A—C14A—C15A106.2 (3)O2B—C14B—H14E109.5
O2A—C14A—H14A110.5C15C—C14B—H14E111.1
C15A—C14A—H14A110.5H14C—C14B—H14E85.9
O2A—C14A—H14B110.5H14D—C14B—H14E129.1
C15A—C14A—H14B110.5O2B—C14B—H14F110.8
H14A—C14A—H14B108.7C15C—C14B—H14F109.1
C14A—C15A—H15A109.5C15B—C14B—H14F129.5
C14A—C15A—H15B109.5H14D—C14B—H14F85.8
H15A—C15A—H15B109.5H14E—C14B—H14F108.3
C14A—C15A—H15C109.5C14B—C15B—H15D109.5
H15A—C15A—H15C109.5H14E—C15B—H15D100.5
H15B—C15A—H15C109.5C14B—C15B—H15E109.5
C13B—O1B—H1OB106 (2)H14E—C15B—H15E141.2
C12B—O2B—C14B118.2 (3)C14B—C15B—H15F109.5
C7B—N1B—C1B105.8 (2)H14E—C15B—H15F81.8
C7B—N2B—C6B107.8 (2)C14B—C15C—H15G109.5
C7B—N2B—H1NB127 (2)C14B—C15C—H15H109.5
C6B—N2B—H1NB125 (2)H15G—C15C—H15H109.5
N1B—C1B—C2B130.9 (3)C14B—C15C—H15I109.5
N1B—C1B—C6B109.4 (3)H15G—C15C—H15I109.5
C2B—C1B—C6B119.8 (3)H15H—C15C—H15I109.5
C7A—N1A—C1A—C2A177.4 (3)C7B—N1B—C1B—C6B1.1 (3)
C7A—N1A—C1A—C6A0.6 (3)N1B—C1B—C2B—C3B179.8 (3)
N1A—C1A—C2A—C3A178.1 (3)C6B—C1B—C2B—C3B0.6 (5)
C6A—C1A—C2A—C3A0.3 (4)C1B—C2B—C3B—C4B1.2 (5)
C1A—C2A—C3A—C4A0.1 (5)C2B—C3B—C4B—C5B1.7 (5)
C2A—C3A—C4A—C5A0.2 (5)C3B—C4B—C5B—C6B0.1 (5)
C3A—C4A—C5A—C6A0.2 (5)C7B—N2B—C6B—C5B178.4 (3)
C7A—N2A—C6A—C5A177.6 (3)C7B—N2B—C6B—C1B0.6 (3)
C7A—N2A—C6A—C1A1.1 (3)C4B—C5B—C6B—N2B179.3 (3)
C4A—C5A—C6A—N2A178.5 (3)C4B—C5B—C6B—C1B1.8 (4)
C4A—C5A—C6A—C1A0.0 (4)N1B—C1B—C6B—N2B1.1 (3)
N1A—C1A—C6A—N2A0.3 (3)C2B—C1B—C6B—N2B178.6 (3)
C2A—C1A—C6A—N2A178.6 (2)N1B—C1B—C6B—C5B178.1 (2)
N1A—C1A—C6A—C5A178.6 (3)C2B—C1B—C6B—C5B2.2 (4)
C2A—C1A—C6A—C5A0.3 (4)C1B—N1B—C7B—N2B0.7 (3)
C1A—N1A—C7A—N2A1.3 (3)C1B—N1B—C7B—C8B179.1 (2)
C1A—N1A—C7A—C8A179.1 (2)C6B—N2B—C7B—N1B0.0 (3)
C6A—N2A—C7A—N1A1.5 (3)C6B—N2B—C7B—C8B179.7 (2)
C6A—N2A—C7A—C8A178.9 (2)N1B—C7B—C8B—C13B11.6 (4)
N1A—C7A—C8A—C9A179.5 (3)N2B—C7B—C8B—C13B168.7 (3)
N2A—C7A—C8A—C9A0.0 (4)N1B—C7B—C8B—C9B168.0 (3)
N1A—C7A—C8A—C13A1.2 (4)N2B—C7B—C8B—C9B11.8 (4)
N2A—C7A—C8A—C13A179.3 (2)C13B—C8B—C9B—C10B0.4 (4)
C13A—C8A—C9A—C10A0.7 (4)C7B—C8B—C9B—C10B179.2 (2)
C7A—C8A—C9A—C10A178.5 (3)C8B—C9B—C10B—C11B0.9 (4)
C8A—C9A—C10A—C11A0.9 (4)C9B—C10B—C11B—C12B0.4 (4)
C9A—C10A—C11A—C12A0.2 (4)C14B—O2B—C12B—C11B4.6 (5)
C10A—C11A—C12A—O2A179.4 (3)C14B—O2B—C12B—C13B175.3 (3)
C10A—C11A—C12A—C13A0.6 (4)C10B—C11B—C12B—O2B177.9 (3)
C14A—O2A—C12A—C11A6.6 (4)C10B—C11B—C12B—C13B2.1 (4)
C14A—O2A—C12A—C13A173.4 (2)C9B—C8B—C13B—O1B178.5 (3)
C11A—C12A—C13A—O1A179.0 (2)C7B—C8B—C13B—O1B1.1 (4)
O2A—C12A—C13A—O1A1.0 (3)C9B—C8B—C13B—C12B1.3 (4)
C11A—C12A—C13A—C8A0.7 (4)C7B—C8B—C13B—C12B179.1 (3)
O2A—C12A—C13A—C8A179.3 (2)O2B—C12B—C13B—O1B2.8 (4)
C9A—C8A—C13A—O1A179.7 (2)C11B—C12B—C13B—O1B177.3 (3)
C7A—C8A—C13A—O1A0.4 (4)O2B—C12B—C13B—C8B177.4 (3)
C9A—C8A—C13A—C12A0.0 (4)C11B—C12B—C13B—C8B2.5 (4)
C7A—C8A—C13A—C12A179.4 (2)C12B—O2B—C14B—C15C87.0 (5)
C12A—O2A—C14A—C15A177.4 (2)C12B—O2B—C14B—C15B179.2 (4)
C7B—N1B—C1B—C2B178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.91 (4)1.67 (4)2.557 (4)164 (4)
N2A—H1NA···O1B0.81 (4)2.14 (4)2.865 (3)149 (3)
N2A—H1NA···O2B0.81 (4)2.57 (4)3.199 (3)136 (3)
O1B—H1OB···N1B0.97 (4)1.67 (4)2.567 (3)151 (3)
N2B—H1NB···O1Ai0.94 (4)1.95 (4)2.877 (3)167 (4)
N2B—H1NB···O2Ai0.94 (4)2.55 (4)3.136 (3)121 (3)
C4A—H4AA···Cg1ii0.932.803.590 (4)143
C14B—H14C···Cg2iii0.972.843.721 (5)152
C15B—H15D···Cg3iv0.962.763.715 (8)176
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z1/2; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.5305 (4), 12.0113 (2), 21.4241 (3)
β (°) 120.449 (1)
V3)4998.17 (14)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
49947, 5171, 4238
Rint0.043
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.151, 1.19
No. of reflections5171
No. of parameters372
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.022P)2 + 16.3221P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.57, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.91 (4)1.67 (4)2.557 (4)164 (4)
N2A—H1NA···O1B0.81 (4)2.14 (4)2.865 (3)149 (3)
N2A—H1NA···O2B0.81 (4)2.57 (4)3.199 (3)136 (3)
O1B—H1OB···N1B0.97 (4)1.67 (4)2.567 (3)151 (3)
N2B—H1NB···O1Ai0.94 (4)1.95 (4)2.877 (3)167 (4)
N2B—H1NB···O2Ai0.94 (4)2.55 (4)3.136 (3)121 (3)
C4A—H4AA···Cg1ii0.93002.80003.590 (4)143.00
C14B—H14C···Cg2iii0.97002.84003.721 (5)152.00
C15B—H15D···Cg3iv0.96002.76003.715 (8)176.00
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y1, z1/2; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1.
 

Footnotes

Additional correspondence author: e-mail: hkargar@pnu.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. YCS thanks Universiti Sains Malaysia for a studentship award. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCraigo, W. A., LeSueur, B. W. & Skibo, E. B. (1999). J. Med. Chem. 42, 3324–3333.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGudmundsson, K. S., Tidwell, J., Lippa, N., Koszalka, G. W., van Draanen, N., Ptak, R. G., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2464–2472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & LaVoie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLatif, N., Mishriky, N. & Assad, F. M. (1983). Recl Trav. Chim. Pays-Bas, 102, 73–77.  CrossRef CAS Google Scholar
First citationRamla, M. M., Omer, M. A., El-Khamry, A. M. & El-Diwani, H. I. (2006). Bioorg. Med. Chem. 14, 7324–7332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A Chem. 245, 8–11.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o745-o746
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds