metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[5-(5-carb­oxy-2-pyridyl)tetra­zolato-κ2N1,N5]cadmium(II) dihydrate

aInstitute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, People's Republic of China
*Correspondence e-mail: yhy@hdu.edu.cn

(Received 28 February 2009; accepted 28 February 2009; online 11 March 2009)

In the title complex, [Cd(C7H4N5O2)2(H2O)2]·2H2O, the water-coordinated CdII atom ([\overline1] symmetry) is coordinated by four N atoms from two symmetry-related 3-carboxy­pyidyl-6-tetra­zolato ligands, forming a distorted octa­hedral complex. The uncoordinated water mol­ecules connect the mononuclear units into a layer structure through O—H⋯N and O—H⋯O hydrogen bonds; similar hydrogen bonds between coordinated water mol­ecules and anionic groups result in a three-dimensional structure.

Related literature

For background, see: Xiong et al. (2002[Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.])

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H4N5O2)2(H2O)2]·2H2O

  • Mr = 564.77

  • Triclinic, [P \overline 1]

  • a = 6.1018 (2) Å

  • b = 7.3805 (1) Å

  • c = 12.383 (2) Å

  • α = 84.17 (3)°

  • β = 88.91 (3)°

  • γ = 65.71 (2)°

  • V = 505.51 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.773, Tmax = 1.000 (expected range = 0.615–0.795)

  • 3817 measured reflections

  • 2286 independent reflections

  • 2104 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.078

  • S = 1.10

  • 2286 reflections

  • 171 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N5 2.293 (2)
Cd1—O3 2.312 (3)
Cd1—N1 2.396 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯N2 0.85 (3) 2.02 (3) 2.860 (4) 166 (4)
O4—H4A⋯O2ii 0.85 (3) 1.92 (3) 2.767 (4) 170 (4)
O1—H1⋯O4iii 0.89 (3) 1.68 (3) 2.566 (4) 170 (5)
O3—H3B⋯N4iv 0.86 (2) 1.96 (3) 2.804 (4) 168 (4)
O3—H3A⋯N3v 0.90 (2) 1.92 (2) 2.806 (4) 172 (3)
Symmetry codes: (ii) -x, -y+1, -z; (iii) x-1, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrothermal reactions involving in situ ligand synthesis have attracted great interests (Xiong et al., 2002). In the contribution, we report the title mononuclear complex (I) based on tetrazol ligand obtained by in situ ligand synthesis.

In the structure of (I), the ligand chelates Cd(II) center through pyridyl N and tetrazol N to form a centrosymmetrical mononuclear complex. Two coordinated water molecules complete the octahedral geometry of Cd(II) center (Fig.1). Two solvent water molecules and carboxylic groups of the ligands form a synthon R44(12) which connects mononuclear unit into a two-dimensional layer structure through hydrogen bonds between solvent water and tetrazol groups (Table. 2). The hydrogen bonds between coordinated water molecules and tetrazol groups result in a three-dimensional structure (Fig.2).

Related literature top

For background, see: Xiong et al. (2002)

Experimental top

A mixture of Cd(NO3)2.4H2O (77 mg, 0.25 mmol), sodium azide(33 mg, 0.5 mmol) and 6-cyanopyridine-3-carboxylic acid (74 mg, 0.5 mmol) was suspended in water (10 ml) and heated in a teflon-lined steel bomb at 160 ° C for 3 days. The colorless crystals were obtained.

Refinement top

H atoms bonded to C were located geometrically (C—H = 0.95 Å) with Uiso(H) = 1.2 Ueq(C). H atoms bonded to O were located by difference maps and refined with a distance restraint of O—H = 0.87 (3) Å. The displacement factors were freely refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of complex (I) with 30% thermal ellipsoids. A = 1 - x, -y, 1 - z
[Figure 2] Fig. 2. The packing structure viewed along a axis.
Diaquabis[5-(5-carboxy-2-pyridyl)tetrazolato- κ2N1,N5]cadmium(II) dihydrate top
Crystal data top
[Cd(C7H4N5O2)2(H2O)2]·2H2OZ = 1
Mr = 564.77F(000) = 282
Triclinic, P1Dx = 1.855 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1018 (2) ÅCell parameters from 612 reflections
b = 7.3805 (1) Åθ = 3.0–27.5°
c = 12.383 (2) ŵ = 1.15 mm1
α = 84.17 (3)°T = 293 K
β = 88.91 (3)°Prism, colorless
γ = 65.71 (2)°0.20 × 0.20 × 0.20 mm
V = 505.51 (8) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube2104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.0°
CCD_Profile_fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 79
Tmin = 0.773, Tmax = 1.000l = 1515
3817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.1909P]
where P = (Fo2 + 2Fc2)/3
2286 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.39 e Å3
5 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cd(C7H4N5O2)2(H2O)2]·2H2Oγ = 65.71 (2)°
Mr = 564.77V = 505.51 (8) Å3
Triclinic, P1Z = 1
a = 6.1018 (2) ÅMo Kα radiation
b = 7.3805 (1) ŵ = 1.15 mm1
c = 12.383 (2) ÅT = 293 K
α = 84.17 (3)°0.20 × 0.20 × 0.20 mm
β = 88.91 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2104 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 1.000Rint = 0.027
3817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0375 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.39 e Å3
2286 reflectionsΔρmin = 0.70 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.00000.50000.03880 (13)
O10.1058 (5)0.1234 (4)0.1759 (2)0.0614 (8)
N10.3050 (5)0.1080 (4)0.32445 (19)0.0328 (6)
C10.1196 (6)0.0465 (5)0.1283 (3)0.0401 (7)
H10.217 (7)0.160 (7)0.152 (4)0.098 (17)*
O20.2500 (5)0.1386 (4)0.0504 (2)0.0580 (7)
N20.5549 (5)0.4825 (4)0.2873 (2)0.0404 (6)
C20.0443 (6)0.1228 (4)0.1777 (2)0.0338 (7)
O30.1539 (5)0.2229 (4)0.5726 (2)0.0512 (6)
N30.7080 (5)0.4857 (4)0.3617 (2)0.0461 (7)
C30.0743 (6)0.2851 (5)0.1257 (3)0.0425 (8)
H30.00600.34680.05810.051*
H3A0.195 (6)0.321 (4)0.587 (2)0.031 (8)*
H3B0.015 (5)0.273 (5)0.540 (3)0.052 (11)*
O40.6141 (5)0.7305 (4)0.1064 (2)0.0579 (7)
N40.7355 (5)0.3463 (4)0.4431 (2)0.0450 (7)
C40.2210 (6)0.3572 (5)0.1722 (3)0.0424 (8)
H40.24530.46760.13670.051*
H4A0.492 (6)0.781 (6)0.063 (3)0.062 (12)*
H4B0.571 (7)0.666 (6)0.157 (3)0.068 (13)*
N50.6029 (5)0.2491 (4)0.4230 (2)0.0354 (6)
C50.1627 (6)0.0381 (5)0.2777 (2)0.0366 (7)
H50.14180.07320.31410.044*
C60.3338 (5)0.2658 (4)0.2722 (2)0.0326 (6)
C70.4943 (6)0.3343 (4)0.3263 (2)0.0340 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0443 (2)0.0424 (2)0.03052 (19)0.02092 (16)0.00857 (14)0.00836 (13)
O10.075 (2)0.0752 (19)0.0503 (16)0.0506 (17)0.0210 (14)0.0103 (13)
N10.0369 (15)0.0352 (13)0.0274 (13)0.0169 (12)0.0003 (10)0.0014 (10)
C10.0366 (19)0.054 (2)0.0307 (16)0.0186 (16)0.0024 (13)0.0080 (14)
O20.0524 (17)0.0714 (17)0.0467 (15)0.0237 (14)0.0215 (12)0.0051 (12)
N20.0446 (17)0.0393 (15)0.0422 (16)0.0237 (13)0.0003 (12)0.0031 (11)
C20.0324 (17)0.0403 (16)0.0252 (15)0.0118 (13)0.0002 (12)0.0016 (12)
O30.0495 (18)0.0497 (15)0.0547 (16)0.0199 (14)0.0028 (13)0.0076 (12)
N30.0491 (19)0.0470 (16)0.0503 (18)0.0276 (15)0.0015 (14)0.0062 (13)
C30.042 (2)0.0482 (19)0.0329 (17)0.0168 (16)0.0089 (14)0.0099 (14)
O40.0610 (19)0.0764 (19)0.0474 (16)0.0446 (16)0.0197 (14)0.0201 (14)
N40.0446 (18)0.0470 (16)0.0478 (17)0.0231 (14)0.0064 (13)0.0032 (13)
C40.046 (2)0.0419 (18)0.0370 (18)0.0190 (16)0.0024 (14)0.0105 (13)
N50.0352 (15)0.0353 (13)0.0381 (14)0.0178 (12)0.0034 (11)0.0014 (11)
C50.0393 (19)0.0405 (17)0.0315 (16)0.0194 (15)0.0029 (13)0.0032 (12)
C60.0321 (17)0.0321 (15)0.0312 (16)0.0114 (13)0.0011 (12)0.0000 (12)
C70.0345 (17)0.0319 (15)0.0336 (16)0.0128 (13)0.0034 (12)0.0017 (12)
Geometric parameters (Å, º) top
Cd1—N52.293 (2)C2—C51.398 (4)
Cd1—N5i2.293 (2)O3—H3A0.90 (2)
Cd1—O3i2.312 (3)O3—H3B0.86 (2)
Cd1—O32.312 (3)N3—N41.325 (4)
Cd1—N12.396 (2)C3—C41.374 (5)
Cd1—N1i2.396 (2)C3—H30.9500
O1—C11.301 (4)O4—H4A0.85 (3)
O1—H10.89 (3)O4—H4B0.85 (3)
N1—C51.342 (4)N4—N51.324 (4)
N1—C61.348 (4)C4—C61.394 (4)
C1—O21.215 (4)C4—H40.9500
C1—C21.499 (4)N5—C71.343 (4)
N2—N31.332 (4)C5—H50.9500
N2—C71.336 (4)C6—C71.472 (4)
C2—C31.379 (4)
N5—Cd1—N5i180.0C5—C2—C1121.8 (3)
N5—Cd1—O3i87.03 (10)Cd1—O3—H3A103 (2)
N5i—Cd1—O3i92.97 (10)Cd1—O3—H3B124 (3)
N5—Cd1—O392.97 (10)H3A—O3—H3B109 (3)
N5i—Cd1—O387.03 (10)N4—N3—N2109.7 (3)
O3i—Cd1—O3180.0C4—C3—C2119.7 (3)
N5—Cd1—N172.97 (9)C4—C3—H3120.2
N5i—Cd1—N1107.03 (9)C2—C3—H3120.2
O3i—Cd1—N191.55 (9)H4A—O4—H4B103 (4)
O3—Cd1—N188.45 (9)N5—N4—N3109.3 (3)
N5—Cd1—N1i107.03 (9)C3—C4—C6119.0 (3)
N5i—Cd1—N1i72.97 (9)C3—C4—H4120.5
O3i—Cd1—N1i88.45 (9)C6—C4—H4120.5
O3—Cd1—N1i91.55 (9)N4—N5—C7105.1 (2)
N1—Cd1—N1i180.00 (5)N4—N5—Cd1140.8 (2)
C1—O1—H1113 (3)C7—N5—Cd1114.08 (19)
C5—N1—C6118.3 (2)N1—C5—C2122.5 (3)
C5—N1—Cd1127.62 (19)N1—C5—H5118.7
C6—N1—Cd1113.95 (18)C2—C5—H5118.7
O2—C1—O1124.7 (3)N1—C6—C4122.1 (3)
O2—C1—C2121.4 (3)N1—C6—C7116.0 (2)
O1—C1—C2113.9 (3)C4—C6—C7121.9 (3)
N3—N2—C7104.7 (3)N2—C7—N5111.3 (3)
C3—C2—C5118.4 (3)N2—C7—C6126.0 (3)
C3—C2—C1119.8 (3)N5—C7—C6122.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.85 (3)2.02 (3)2.860 (4)166 (4)
O4—H4A···O2ii0.85 (3)1.92 (3)2.767 (4)170 (4)
O1—H1···O4iii0.89 (3)1.68 (3)2.566 (4)170 (5)
O3—H3B···N4iv0.86 (2)1.96 (3)2.804 (4)168 (4)
O3—H3A···N3v0.90 (2)1.92 (2)2.806 (4)172 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C7H4N5O2)2(H2O)2]·2H2O
Mr564.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1018 (2), 7.3805 (1), 12.383 (2)
α, β, γ (°)84.17 (3), 88.91 (3), 65.71 (2)
V3)505.51 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.773, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3817, 2286, 2104
Rint0.027
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 1.10
No. of reflections2286
No. of parameters171
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.70

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected geometric parameters (Å, º) top
Cd1—N52.293 (2)Cd1—O32.312 (3)
Cd1—O3i2.312 (3)Cd1—N12.396 (2)
N5—Cd1—N172.97 (9)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···N20.85 (3)2.02 (3)2.860 (4)166 (4)
O4—H4A···O2ii0.85 (3)1.92 (3)2.767 (4)170 (4)
O1—H1···O4iii0.89 (3)1.68 (3)2.566 (4)170 (5)
O3—H3B···N4iv0.86 (2)1.96 (3)2.804 (4)168 (4)
O3—H3A···N3v0.90 (2)1.92 (2)2.806 (4)172 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Zhejiang Provincial Natural Science Foundation of China (grant Nos.Y4080093 and Y407189).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds