organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­bromo­pyridine

aFaculty of Information Technology and Science, Al-Balqa'a Applied University, Salt, Jordan, and bDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 10 March 2009; accepted 16 March 2009; online 25 March 2009)

In the title compound, C5H3Br2N, C—H⋯N hydrogen-bonding inter­actions and Br⋯Br inter­actions [3.9418 (3) and 3.8986 (3) Å] connect the mol­ecules into planar sheets stacked perpendicular to the b axis. In addition, pyrid­yl–pyridyl inter­sheet ππ stacking inter­actions [centroid–centroid distance = 4.12 (1) Å] result in a three-dimensional network.

Related literature

For hydrogen bonding, see: Desiraju (1997[Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1482.]). For related structures, see: Al-Far & Ali (2007[Al-Far, R. & Ali, B. F. (2007). J. Chem. Crystallogr. 37, 333-341.], 2008[Al-Far, R. & Ali, B. F. (2008). J. Chem. Crystallogr. 38, 373-379.]); Ali & Al-Far (2008[Ali, B. F. & R. Al-Far, R. (2008). J. Chem. Crystallogr. 37, 689-693.]); Ali et al. (2008a[Ali, B. F., Al-Far, R. H. & Haddad, S. F. (2008a). Acta Cryst. E64, m485-m486.],b[Ali, B. F., Al-Far, R. H. & Haddad, S. F. (2008b). Acta Cryst. E64, m751-m752.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For theoretical analysis, see: Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.], 2007[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2007). J. Phys. Chem. A, 111, 2319-2328.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3Br2N

  • Mr = 236.90

  • Orthorhombic, P n m a

  • a = 6.1063 (4) Å

  • b = 6.5442 (4) Å

  • c = 15.8196 (9) Å

  • V = 632.17 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.71 mm−1

  • T = 90 K

  • 0.46 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.053, Tmax = 0.170

  • 8997 measured reflections

  • 996 independent reflections

  • 887 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.05

  • 996 reflections

  • 49 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N1i 0.95 2.38 3.323 (3) 175
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL; software used to prepare material for publication: XCIF (Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL.

Supporting information


Comment top

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). The interactions governing the crystal organization are expected to affect the packing and specific properties of solids. Intermolecular interactions are the essence of supramolecular chemistry, and the field of crystal supramolecularity seeks to understand intermolecular interactions by analyses of crystal packing. We are presently interested in the synthesis and the structural aspects of halo-metal anion salts containing different organic cations (Al-Far & Ali 2007, 2008; Ali et al. 2008a, b; Ali & Al-Far 2008). The title compound, (I), arose accidentally when attempting to crystallize CdBr42- with 2,5-bibromopyridinium cation. The compound had not been reported previously, thus, the structure of (I) has been characterized crystallographically and is presented here.

The bond distances and angles within the molecule of (I) (Fig. 1) are normal (Allen et al., 1987). There is a non-classical hydrogen bonding interaction of the type C—H···N in the crystal structure which links molecules into one-dimensional chains (Fig. 2) parallel to the a-axis. The strength of the hydrogen bonds is represented by relatively short D···A distance and D—H···A angle (H···A = 2.38 Å, D—H···A 175°, Table 1). The resulting chains are further connected through Br···Br interactions in a zig zag arrangement to form sheets in the ac plane (Fig. 2); the Br···Br separation being 3.9418 (3) and 3.8986 (3) Å. The sheets are stacked along the b-axis with pyridyl···pyridyl π···π stacking intermolecular inreactions with distance between the centroids of the rings being 4.12 (1) Å. It is noteworthy that structural and theoritical results (Awwadi et al., 2006; Awwadi et al., 2007), show the significance of Br···Br bonding synthons in influencing structures of crystalline materials and in use as potential building blocks in crystal engineering via supramolecular synthesis.

Related literature top

For hydrogen bonding, see: Desiraju (1997). For related structures, see: Al-Far & Ali (2007, 2008); Ali & Al-Far (2008); Ali et al. (2008a,b). For bond-length data, see: Allen et al. (1987). For theoretical analysis, see: Awwadi et al. (2006, 2007).

Experimental top

The title compound crystallized during a reaction aiming to crystallize the anion [CuBr4]2- with 2,5-dibromopyridinium cation. Colorless diamond like crystals of the title compound were obtained from an ethanolic solution of the reaction which involved a sequential addition to excess 2,5-dibrormopyridine (2.25 mmole) in ethanol of CdCl2 (1 mmole) and 60% HBr (1 ml) in ethanol.

Refinement top

Hydrogen atoms were positioned geometrically, with C—H = 0.95 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP (Bruker, 2004) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Bruker, 2004) and SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular drawing of (I) shown with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I) down the b-axis. Hydrogen bonding and Br···Br interactions are shown as dashed lines.
2,5-dibromopyridine top
Crystal data top
C5H3Br2NF(000) = 440
Mr = 236.90Dx = 2.489 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5485 reflections
a = 6.1063 (4) Åθ = 2.6–30.0°
b = 6.5442 (4) ŵ = 12.71 mm1
c = 15.8196 (9) ÅT = 90 K
V = 632.17 (7) Å3Diamond, colourless
Z = 40.46 × 0.21 × 0.14 mm
Data collection top
Bruker SMART APEX
diffractometer
996 independent reflections
Radiation source: fine-focus sealed tube887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3 pixels mm-1θmax = 30.0°, θmin = 3.6°
ω scansh = 88
Absorption correction: numerical
(SADABS; Bruker, 2004)
k = 99
Tmin = 0.053, Tmax = 0.170l = 2222
8997 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.1337P]
where P = (Fo2 + 2Fc2)/3
996 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
C5H3Br2NV = 632.17 (7) Å3
Mr = 236.90Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 6.1063 (4) ŵ = 12.71 mm1
b = 6.5442 (4) ÅT = 90 K
c = 15.8196 (9) Å0.46 × 0.21 × 0.14 mm
Data collection top
Bruker SMART APEX
diffractometer
996 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2004)
887 reflections with I > 2σ(I)
Tmin = 0.053, Tmax = 0.170Rint = 0.030
8997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.05Δρmax = 0.68 e Å3
996 reflectionsΔρmin = 0.77 e Å3
49 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.41023 (4)0.75000.171199 (12)0.01101 (9)
N10.4781 (3)0.75000.00105 (12)0.0077 (4)
Br50.98268 (4)0.75000.173378 (13)0.01214 (9)
C20.5860 (4)0.75000.07141 (12)0.0063 (4)
C30.8124 (3)0.75000.07962 (13)0.0089 (4)
H3A0.88080.75000.13360.011*
C40.9342 (4)0.75000.00590 (14)0.0088 (4)
H4A1.08970.75000.00770.011*
C50.8236 (4)0.75000.07079 (12)0.0074 (4)
C60.5958 (4)0.75000.07196 (12)0.0083 (4)
H6A0.52210.75000.12480.010*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.01285 (15)0.01709 (15)0.00310 (12)0.0000.00345 (7)0.000
N10.0081 (9)0.0110 (9)0.0041 (8)0.0000.0000 (6)0.000
Br50.01335 (15)0.01839 (15)0.00466 (13)0.0000.00480 (7)0.000
C20.0095 (11)0.0078 (10)0.0015 (8)0.0000.0012 (7)0.000
C30.0087 (10)0.0114 (10)0.0066 (9)0.0000.0024 (8)0.000
C40.0067 (9)0.0114 (10)0.0084 (10)0.0000.0018 (8)0.000
C50.0088 (10)0.0096 (10)0.0040 (9)0.0000.0026 (7)0.000
C60.0100 (11)0.0100 (11)0.0048 (9)0.0000.0019 (7)0.000
Geometric parameters (Å, º) top
Br2—C21.909 (2)C3—H3A0.9500
N1—C21.322 (3)C4—C51.389 (3)
N1—C61.332 (3)C4—H4A0.9500
Br5—C51.891 (2)C5—C61.391 (3)
C2—C31.389 (3)C6—H6A0.9500
C3—C41.383 (3)
C2—N1—C6117.43 (19)C3—C4—H4A120.8
N1—C2—C3125.27 (19)C5—C4—H4A120.8
N1—C2—Br2115.88 (16)C4—C5—C6119.87 (19)
C3—C2—Br2118.85 (15)C4—C5—Br5119.98 (17)
C4—C3—C2117.15 (19)C6—C5—Br5120.15 (16)
C4—C3—H3A121.4N1—C6—C5121.91 (19)
C2—C3—H3A121.4N1—C6—H6A119.0
C3—C4—C5118.38 (19)C5—C6—H6A119.0
C6—N1—C2—C30.0C3—C4—C5—C60.0
C6—N1—C2—Br2180.0C3—C4—C5—Br5180.0
N1—C2—C3—C40.0C2—N1—C6—C50.0
Br2—C2—C3—C4180.0C4—C5—C6—N10.0
C2—C3—C4—C50.0Br5—C5—C6—N1180.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N1i0.952.383.323 (3)175
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC5H3Br2N
Mr236.90
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)90
a, b, c (Å)6.1063 (4), 6.5442 (4), 15.8196 (9)
V3)632.17 (7)
Z4
Radiation typeMo Kα
µ (mm1)12.71
Crystal size (mm)0.46 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2004)
Tmin, Tmax0.053, 0.170
No. of measured, independent and
observed [I > 2σ(I)] reflections
8997, 996, 887
Rint0.030
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.05
No. of reflections996
No. of parameters49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.77

Computer programs: SMART (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP (Bruker, 2004) and SHELXTL (Sheldrick, 2008), XCIF (Bruker, 2004) and SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N1i0.952.383.323 (3)175
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Al-Balqa'a Applied University and Al al-Bayt University are thanked for financial support.

References

First citationAl-Far, R. & Ali, B. F. (2007). J. Chem. Crystallogr. 37, 333-341.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Far, R. & Ali, B. F. (2008). J. Chem. Crystallogr. 38, 373-379.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, B. F. & R. Al-Far, R. (2008). J. Chem. Crystallogr. 37, 689–693.  Google Scholar
First citationAli, B. F., Al-Far, R. H. & Haddad, S. F. (2008a). Acta Cryst. E64, m485–m486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, B. F., Al-Far, R. H. & Haddad, S. F. (2008b). Acta Cryst. E64, m751–m752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2007). J. Phys. Chem. A, 111, 2319–2328.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1997). Chem. Commun. pp. 1475–1482.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds