organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(2,3,4,6-Tetra-O-acetyl-β-D-allo­pyranos­yl­oxy)benzyl­­idene]thio­semi­carbazide

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: chuandayouji217@163.com

(Received 15 February 2009; accepted 27 February 2009; online 6 March 2009)

The title compound, C22H27N3O10S, was synthesized by reaction of an ethanol solution of helicid (systematic name: 4-formylphenl-β-D-allopyranoside), thio­semicarbazide and acetic acid. The mol­ecule exhibits a trans conformation with respect to the C=N double bond. The pyran ring adopts a chair conformation. In the crystal structure, the mol­ecules are linked into chains parallel to the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the synthesis and biological activity of helicid, see: Chen et al. (1981[Chen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893-1897.]); Sha & Mao (1987[Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 21-27.]); Zhu et al. (2006[Zhu, Q. L., Tang, Q., Li, Y. & Yin, S. F. (2006). Chin. J. Org. Chem. 26, 1264-1267.]); Yang et al. (2008[Yang, H. J., Hu, C., LI, Y. & Yin, S. F. (2008). Chin. J. Org. Chem. 28, 899-902.]); Wen et al. (2007[Wen, H., Wang, Z. T., Zhou, Y. Y., Lin, C. L., Gou, H., Peng, W. L., Song, H. C., Cao, R. H., Dai, X. C., Hu, L. N., Zhang, L. S. & Wang, Y. H. (2007). Faming Zhuanli Shengqing Gongkai Shuomingshu. Chinese Patent CN 101 029 064.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27N3O10S

  • Mr = 525.53

  • Orthorhombic, P 21 21 21

  • a = 9.848 (3) Å

  • b = 11.515 (3) Å

  • c = 23.250 (4) Å

  • V = 2636.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 292 K

  • 0.54 × 0.46 × 0.24 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.909, Tmax = 0.958

  • 5423 measured reflections

  • 4940 independent reflections

  • 2851 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 200 reflections intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.195

  • S = 1.07

  • 4940 reflections

  • 329 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2108 Friedel pairs

  • Flack parameter: 0.35 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N1⋯O10i 0.75 (5) 2.33 (5) 3.076 (6) 172 (6)
N3—H3A⋯O8ii 0.86 2.60 3.229 (7) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) x, y+1, z.

Data collection: DIFRAC (Gabe et al., 1993[Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The natural compound helicid (systematic name: 4-formylphenl-β-D-allopyranoside), which is extracted from the fruit of Helicia nilagirica Beed. (Chen et al., 1981), has been one major active ingredient of herb medicine used in China for a long time. It has manifested good biological effects on the central nervous system and low toxicity (Sha & Mao, 1987). Some derivatives of this compound have been reported to possess good pharmacological activity (Zhu et al., 2006; Yang et al., 2008). We report here the crystal structure of the title compound, whose synthesis has been already reported elsewhere (Wen et al., 2007).

In the molecule of the title compound (Fig. 1), the pyran ring adopts a chair conformation, with the hydroxy group at C3 in axial position and the other substituents at C1, C2 and C4 in equatorial positions. The average C–C bond length within the pyran ring is 1.524 (3) Å. The molecule exhibits a trans conformation with respect to the N1C21 double bond, as indicated by the value of the C21–N1–N2–C22 torsion angle of -171.8 (6)°. In the crystal packing, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains running parallel to the b axis.

Related literature top

For the synthesis and biological activities of helicid, see: Chen et al. (1981); Sha & Mao (1987); Zhu et al. (2006); Yang et al. (2008); Wen et al. (2007).

Experimental top

A mixture of helicid (0.45 g, 1 mmol), acetic acid (0.5 ml) and thiosemicarbazide (0.09 g, 1 mmol) in ethanol (15 ml) was refluxed for 3 h. After cooling to room temperature, the precipitate was filtered, washed with ether and recrystallized from 95% alcohol to give a white powder. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/dichloromethane (4:1 v/v) solution at room temperature.

Refinement top

The H atom bound to N2 was located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq (C, N) or 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC (Gabe et al., 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
1-[4-(2,3,4,6-Tetra-O-acetyl-β-D- allopyranosyloxy)benzylidene]thiosemicarbazide top
Crystal data top
C22H27N3O10SF(000) = 1104
Mr = 525.53Dx = 1.324 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19 reflections
a = 9.848 (3) Åθ = 4.5–7.5°
b = 11.515 (3) ŵ = 0.18 mm1
c = 23.250 (4) ÅT = 292 K
V = 2636.5 (12) Å3Block, colourless
Z = 40.54 × 0.46 × 0.24 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2851 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
ω/2–θ scansh = 1012
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.909, Tmax = 0.958l = 2828
5423 measured reflections3 standard reflections every 200 reflections
4940 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1108P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4940 reflectionsΔρmax = 0.30 e Å3
329 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack, (1983), 2108 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.35 (19)
Crystal data top
C22H27N3O10SV = 2636.5 (12) Å3
Mr = 525.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.848 (3) ŵ = 0.18 mm1
b = 11.515 (3) ÅT = 292 K
c = 23.250 (4) Å0.54 × 0.46 × 0.24 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2851 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.008
Tmin = 0.909, Tmax = 0.9583 standard reflections every 200 reflections
5423 measured reflections intensity decay: 1.0%
4940 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195Δρmax = 0.30 e Å3
S = 1.07Δρmin = 0.27 e Å3
4940 reflectionsAbsolute structure: Flack, (1983), 2108 Friedel pairs
329 parametersAbsolute structure parameter: 0.35 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67386 (19)0.79792 (13)1.07682 (8)0.0785 (5)
O10.0580 (3)0.0411 (3)0.84568 (15)0.0535 (9)
O20.0599 (4)0.0865 (4)0.7938 (2)0.0862 (14)
O30.2305 (3)0.1128 (3)0.71708 (14)0.0522 (9)
O40.1797 (6)0.3014 (4)0.7185 (2)0.1061 (18)
O50.5080 (3)0.0914 (3)0.74617 (14)0.0482 (8)
O60.6199 (5)0.2413 (4)0.70896 (19)0.0865 (14)
O70.6077 (3)0.1962 (3)0.84617 (15)0.0501 (8)
O80.5379 (4)0.3793 (3)0.8569 (2)0.0781 (13)
O90.4971 (3)0.0280 (3)0.92000 (13)0.0443 (7)
O100.3267 (3)0.0069 (3)0.85614 (12)0.0407 (7)
N10.6208 (4)0.4935 (4)1.00575 (18)0.0548 (11)
N20.6680 (5)0.5844 (4)1.0393 (2)0.0565 (12)
H2N10.708 (5)0.569 (5)1.066 (2)0.049 (17)*
N30.5385 (6)0.7104 (5)0.9885 (2)0.0832 (17)
H3A0.51340.65350.96700.100*
H3B0.50780.77910.98200.100*
C10.2764 (4)0.0066 (4)0.7979 (2)0.0402 (10)
H10.34060.05120.77450.048*
C20.2779 (4)0.1174 (4)0.7760 (2)0.0433 (11)
H20.21590.16490.79900.052*
C30.4199 (5)0.1666 (4)0.7796 (2)0.0459 (12)
H30.42300.24670.76540.055*
C40.4693 (4)0.1589 (4)0.8422 (2)0.0396 (10)
H40.41190.20720.86690.048*
C50.4627 (4)0.0333 (4)0.86160 (19)0.0367 (10)
H50.52450.01490.83870.044*
C60.1424 (4)0.0717 (5)0.7977 (2)0.0496 (13)
H6A0.16020.15460.79870.060*
H6B0.09430.05480.76230.060*
C70.0460 (5)0.0308 (5)0.8376 (3)0.0597 (14)
C80.1389 (6)0.0288 (6)0.8892 (3)0.0787 (19)
H8A0.17040.10610.89710.118*
H8B0.21520.02060.88140.118*
H8C0.09030.00030.92200.118*
C90.1755 (6)0.2085 (6)0.6944 (3)0.0694 (16)
C100.1184 (7)0.1847 (6)0.6369 (3)0.083 (2)
H10A0.08420.25550.62060.125*
H10B0.18800.15350.61250.125*
H10C0.04570.12950.64030.125*
C110.6074 (5)0.1380 (5)0.7148 (2)0.0541 (14)
C120.6992 (6)0.0490 (6)0.6898 (3)0.0775 (19)
H12A0.77020.08670.66860.116*
H12B0.73820.00340.72020.116*
H12C0.64840.00060.66450.116*
C130.6297 (6)0.3110 (5)0.8532 (2)0.0576 (14)
C140.7786 (6)0.3377 (6)0.8568 (3)0.084 (2)
H14A0.81040.32270.89510.126*
H14B0.82720.28960.83010.126*
H14C0.79340.41790.84750.126*
C150.5342 (4)0.0805 (4)0.9425 (2)0.0401 (10)
C160.6049 (5)0.0769 (4)0.9935 (2)0.0512 (12)
H160.62490.00621.01090.061*
C170.6458 (5)0.1805 (5)1.0185 (2)0.0565 (14)
H170.69460.17881.05270.068*
C180.6155 (5)0.2860 (4)0.9935 (2)0.0439 (11)
C190.5441 (5)0.2877 (4)0.9419 (2)0.0516 (13)
H190.52350.35830.92450.062*
C200.5032 (5)0.1840 (4)0.9160 (2)0.0483 (12)
H200.45580.18480.88140.058*
C210.6587 (5)0.3937 (4)1.0228 (2)0.0500 (12)
H210.71550.38841.05460.060*
C220.6230 (6)0.6925 (5)1.0308 (2)0.0585 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1123 (13)0.0390 (8)0.0844 (11)0.0062 (8)0.0385 (10)0.0059 (8)
O10.0362 (16)0.058 (2)0.067 (2)0.0041 (15)0.0009 (15)0.0004 (19)
O20.077 (3)0.083 (3)0.098 (4)0.023 (2)0.002 (2)0.018 (3)
O30.062 (2)0.044 (2)0.050 (2)0.0105 (17)0.0127 (16)0.0017 (16)
O40.170 (5)0.046 (3)0.103 (4)0.036 (3)0.061 (3)0.005 (3)
O50.0532 (18)0.0387 (18)0.0527 (19)0.0070 (16)0.0063 (15)0.0047 (15)
O60.096 (3)0.075 (3)0.088 (3)0.035 (3)0.004 (3)0.031 (3)
O70.0487 (17)0.0349 (18)0.067 (2)0.0089 (15)0.0076 (17)0.0047 (16)
O80.082 (3)0.031 (2)0.122 (4)0.003 (2)0.022 (2)0.005 (2)
O90.0551 (17)0.0317 (16)0.0461 (18)0.0059 (15)0.0085 (15)0.0055 (15)
O100.0422 (15)0.0364 (17)0.0435 (18)0.0015 (14)0.0017 (14)0.0034 (14)
N10.062 (3)0.049 (3)0.053 (3)0.002 (2)0.016 (2)0.009 (2)
N20.077 (3)0.035 (2)0.058 (3)0.003 (2)0.029 (3)0.000 (2)
N30.120 (5)0.046 (3)0.084 (4)0.004 (3)0.046 (3)0.003 (3)
C10.045 (2)0.024 (2)0.051 (3)0.0048 (19)0.000 (2)0.000 (2)
C20.050 (3)0.030 (2)0.050 (3)0.003 (2)0.004 (2)0.000 (2)
C30.056 (3)0.028 (2)0.054 (3)0.000 (2)0.003 (2)0.008 (2)
C40.042 (2)0.024 (2)0.052 (3)0.0039 (18)0.005 (2)0.007 (2)
C50.044 (2)0.023 (2)0.043 (3)0.0005 (19)0.0009 (19)0.0030 (19)
C60.043 (3)0.050 (3)0.056 (3)0.001 (2)0.000 (2)0.008 (3)
C70.053 (3)0.045 (3)0.081 (4)0.002 (3)0.005 (3)0.001 (3)
C80.058 (3)0.084 (5)0.095 (4)0.019 (3)0.014 (3)0.004 (4)
C90.083 (4)0.055 (4)0.070 (4)0.020 (3)0.028 (3)0.010 (3)
C100.099 (5)0.080 (5)0.071 (4)0.022 (4)0.034 (4)0.001 (3)
C110.060 (3)0.058 (4)0.045 (3)0.028 (3)0.006 (3)0.018 (3)
C120.062 (3)0.096 (5)0.075 (4)0.023 (3)0.020 (3)0.005 (4)
C130.076 (4)0.039 (3)0.058 (3)0.024 (3)0.018 (3)0.012 (3)
C140.070 (4)0.066 (4)0.117 (6)0.025 (3)0.019 (4)0.028 (4)
C150.041 (2)0.032 (2)0.048 (3)0.004 (2)0.003 (2)0.007 (2)
C160.069 (3)0.032 (3)0.052 (3)0.002 (2)0.013 (3)0.003 (2)
C170.069 (3)0.053 (3)0.048 (3)0.002 (3)0.023 (2)0.002 (3)
C180.054 (3)0.030 (2)0.048 (3)0.001 (2)0.005 (2)0.010 (2)
C190.062 (3)0.035 (3)0.057 (3)0.000 (2)0.013 (2)0.004 (2)
C200.062 (3)0.035 (3)0.048 (3)0.008 (2)0.018 (2)0.003 (2)
C210.060 (3)0.040 (3)0.050 (3)0.003 (2)0.015 (2)0.009 (2)
C220.076 (3)0.047 (3)0.053 (3)0.004 (3)0.016 (3)0.007 (3)
Geometric parameters (Å, º) top
S1—C221.693 (6)C4—H40.9800
O1—C71.330 (6)C5—H50.9800
O1—C61.435 (6)C6—H6A0.9700
O2—C71.210 (7)C6—H6B0.9700
O3—C91.336 (6)C7—C81.510 (8)
O3—C21.448 (6)C8—H8A0.9600
O4—C91.207 (7)C8—H8B0.9600
O5—C111.333 (6)C8—H8C0.9600
O5—C31.452 (6)C9—C101.477 (8)
O6—C111.204 (7)C10—H10A0.9600
O7—C131.349 (6)C10—H10B0.9600
O7—C41.432 (6)C10—H10C0.9600
O8—C131.201 (7)C11—C121.485 (8)
O9—C51.401 (5)C12—H12A0.9600
O9—C151.404 (5)C12—H12B0.9600
O10—C51.422 (5)C12—H12C0.9600
O10—C11.442 (5)C13—C141.501 (8)
N1—C211.271 (6)C14—H14A0.9600
N1—N21.386 (6)C14—H14B0.9600
N2—C221.336 (7)C14—H14C0.9600
N2—H2N10.75 (5)C15—C161.374 (7)
N3—C221.307 (7)C15—C201.376 (7)
N3—H3A0.8600C16—C171.387 (7)
N3—H3B0.8600C16—H160.9300
C1—C21.516 (6)C17—C181.380 (7)
C1—C61.518 (6)C17—H170.9300
C1—H10.9800C18—C191.391 (7)
C2—C31.512 (7)C18—C211.477 (7)
C2—H20.9800C19—C201.397 (7)
C3—C41.536 (6)C19—H190.9300
C3—H30.9800C20—H200.9300
C4—C51.517 (6)C21—H210.9300
C7—O1—C6119.3 (4)C7—C8—H8C109.5
C9—O3—C2118.3 (4)H8A—C8—H8C109.5
C11—O5—C3119.4 (4)H8B—C8—H8C109.5
C13—O7—C4117.1 (4)O4—C9—O3122.3 (5)
C5—O9—C15117.6 (3)O4—C9—C10126.7 (5)
C5—O10—C1114.0 (3)O3—C9—C10111.0 (5)
C21—N1—N2114.1 (4)C9—C10—H10A109.5
C22—N2—N1120.7 (5)C9—C10—H10B109.5
C22—N2—H2N1121 (4)H10A—C10—H10B109.5
N1—N2—H2N1117 (4)C9—C10—H10C109.5
C22—N3—H3A120.0H10A—C10—H10C109.5
C22—N3—H3B120.0H10B—C10—H10C109.5
H3A—N3—H3B120.0O6—C11—O5122.3 (6)
O10—C1—C2108.3 (4)O6—C11—C12125.2 (5)
O10—C1—C6107.5 (4)O5—C11—C12112.5 (5)
C2—C1—C6118.2 (4)C11—C12—H12A109.5
O10—C1—H1107.5C11—C12—H12B109.5
C2—C1—H1107.5H12A—C12—H12B109.5
C6—C1—H1107.5C11—C12—H12C109.5
O3—C2—C3111.4 (4)H12A—C12—H12C109.5
O3—C2—C1106.3 (4)H12B—C12—H12C109.5
C3—C2—C1110.1 (4)O8—C13—O7122.0 (5)
O3—C2—H2109.7O8—C13—C14126.6 (5)
C3—C2—H2109.7O7—C13—C14111.4 (5)
C1—C2—H2109.7C13—C14—H14A109.5
O5—C3—C2107.4 (4)C13—C14—H14B109.5
O5—C3—C4106.5 (4)H14A—C14—H14B109.5
C2—C3—C4108.9 (4)C13—C14—H14C109.5
O5—C3—H3111.3H14A—C14—H14C109.5
C2—C3—H3111.3H14B—C14—H14C109.5
C4—C3—H3111.3C16—C15—C20121.7 (4)
O7—C4—C5107.9 (3)C16—C15—O9115.3 (4)
O7—C4—C3110.2 (4)C20—C15—O9123.0 (4)
C5—C4—C3108.9 (4)C15—C16—C17118.8 (5)
O7—C4—H4109.9C15—C16—H16120.6
C5—C4—H4109.9C17—C16—H16120.6
C3—C4—H4109.9C18—C17—C16121.2 (4)
O9—C5—O10107.5 (3)C18—C17—H17119.4
O9—C5—C4108.6 (3)C16—C17—H17119.4
O10—C5—C4108.9 (3)C17—C18—C19119.0 (4)
O9—C5—H5110.6C17—C18—C21118.9 (4)
O10—C5—H5110.6C19—C18—C21122.1 (4)
C4—C5—H5110.6C18—C19—C20120.4 (5)
O1—C6—C1112.3 (4)C18—C19—H19119.8
O1—C6—H6A109.1C20—C19—H19119.8
C1—C6—H6A109.1C15—C20—C19118.8 (4)
O1—C6—H6B109.1C15—C20—H20120.6
C1—C6—H6B109.1C19—C20—H20120.6
H6A—C6—H6B107.9N1—C21—C18122.0 (4)
O2—C7—O1122.4 (5)N1—C21—H21119.0
O2—C7—C8127.4 (5)C18—C21—H21119.0
O1—C7—C8110.2 (5)N3—C22—N2118.0 (5)
C7—C8—H8A109.5N3—C22—S1123.5 (5)
C7—C8—H8B109.5N2—C22—S1118.5 (4)
H8A—C8—H8B109.5
C21—N1—N2—C22171.8 (6)C7—O1—C6—C1102.7 (5)
C5—O10—C1—C261.6 (4)O10—C1—C6—O143.1 (5)
C5—O10—C1—C6169.7 (3)C2—C1—C6—O179.8 (5)
C9—O3—C2—C384.1 (5)C6—O1—C7—O212.4 (8)
C9—O3—C2—C1156.0 (4)C6—O1—C7—C8166.7 (4)
O10—C1—C2—O3178.4 (3)C2—O3—C9—O49.7 (9)
C6—C1—C2—O359.1 (5)C2—O3—C9—C10173.3 (5)
O10—C1—C2—C357.6 (5)C3—O5—C11—O66.7 (7)
C6—C1—C2—C3179.9 (4)C3—O5—C11—C12172.2 (4)
C11—O5—C3—C2141.7 (4)C4—O7—C13—O81.1 (7)
C11—O5—C3—C4101.7 (5)C4—O7—C13—C14180.0 (5)
O3—C2—C3—O560.0 (5)C5—O9—C15—C16161.2 (4)
C1—C2—C3—O557.7 (5)C5—O9—C15—C2018.6 (6)
O3—C2—C3—C4174.9 (4)C20—C15—C16—C170.1 (8)
C1—C2—C3—C457.2 (5)O9—C15—C16—C17179.8 (5)
C13—O7—C4—C5154.5 (4)C15—C16—C17—C180.7 (8)
C13—O7—C4—C386.7 (5)C16—C17—C18—C190.9 (8)
O5—C3—C4—O759.8 (4)C16—C17—C18—C21178.5 (5)
C2—C3—C4—O7175.3 (4)C17—C18—C19—C200.3 (8)
O5—C3—C4—C558.4 (4)C21—C18—C19—C20179.0 (5)
C2—C3—C4—C557.2 (5)C16—C15—C20—C190.4 (8)
C15—O9—C5—O1079.8 (4)O9—C15—C20—C19179.7 (5)
C15—O9—C5—C4162.5 (4)C18—C19—C20—C150.3 (8)
C1—O10—C5—O9180.0 (3)N2—N1—C21—C18178.3 (5)
C1—O10—C5—C462.5 (4)C17—C18—C21—N1171.7 (5)
O7—C4—C5—O965.2 (4)C19—C18—C21—N17.6 (8)
C3—C4—C5—O9175.2 (4)N1—N2—C22—N33.1 (9)
O7—C4—C5—O10178.1 (3)N1—N2—C22—S1174.7 (4)
C3—C4—C5—O1058.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N1···O10i0.75 (5)2.33 (5)3.076 (6)172 (6)
N3—H3A···O8ii0.862.603.229 (7)131
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H27N3O10S
Mr525.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)9.848 (3), 11.515 (3), 23.250 (4)
V3)2636.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.54 × 0.46 × 0.24
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.909, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5423, 4940, 2851
Rint0.008
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.195, 1.07
No. of reflections4940
No. of parameters329
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.27
Absolute structureFlack, (1983), 2108 Friedel pairs
Absolute structure parameter0.35 (19)

Computer programs: DIFRAC (Gabe et al., 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N1···O10i0.75 (5)2.33 (5)3.076 (6)172 (6)
N3—H3A···O8ii0.862.603.229 (7)130.9
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationChen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem. 10, 1893–1897.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 21–27.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H., Wang, Z. T., Zhou, Y. Y., Lin, C. L., Gou, H., Peng, W. L., Song, H. C., Cao, R. H., Dai, X. C., Hu, L. N., Zhang, L. S. & Wang, Y. H. (2007). Faming Zhuanli Shengqing Gongkai Shuomingshu. Chinese Patent CN 101 029 064.  Google Scholar
First citationYang, H. J., Hu, C., LI, Y. & Yin, S. F. (2008). Chin. J. Org. Chem. 28, 899–902.  CAS Google Scholar
First citationZhu, Q. L., Tang, Q., Li, Y. & Yin, S. F. (2006). Chin. J. Org. Chem. 26, 1264–1267.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds