organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o802-o803

2-Fluoro-N-(4-meth­oxy­phen­yl)benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 3 March 2009; accepted 11 March 2009; online 19 March 2009)

In the title compound, C14H12FNO2, the fluoro­benzene and methoxy­benzene rings are inclined at 27.06 (7) and 23.86 (7)°, respectively, to the amide portion of the mol­ecule and at 3.46 (9)° to one another. The meth­oxy substituent lies close to the methoxy­benzene ring plane, with a maximum deviation of 0.152 (3) Å for the methyl C atom. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into rows along a. Weak C—H⋯O and C—H⋯F inter­actions further stabilize the packing, forming corrugated sheets in the bc plane.

Related literature

For the biological activity of benzamides and related compounds and their use in organic synthesis, see: Vega-Noverola et al. (1989[Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.]); Yoo et al. (2005[Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941-6943.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322-o2323.]). For related structures, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322-o2323.]); Chopra & Guru Row (2008[Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.]); Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Cockroft et al. (2007[Cockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem. 5, 1062-1080.]); Spitaleri et al. (2004[Spitaleri, A., Hunter, C. A., McCabe, J. F., Packer, M. J. & Cockroft, S. L. (2004). CrystEngComm, 6, 489-493.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12FNO2

  • Mr = 245.25

  • Orthorhombic, P 21 21 21

  • a = 5.2901 (2) Å

  • b = 6.6435 (3) Å

  • c = 31.7823 (11) Å

  • V = 1116.98 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 89 K

  • 0.30 × 0.23 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.996

  • 19727 measured reflections

  • 2185 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.06

  • 2185 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.34 (2) 3.1366 (17) 158.5 (17)
C4—H4⋯F1ii 0.95 2.44 3.2472 (17) 143
C14—H14B⋯O2iii 0.98 2.61 3.3753 (18) 135
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]. Cg2 is the centroid of the C3–C8 benzene ring.

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The benzanilide core is present in compounds with a wide range of biological activity and benzanilides and benzamides are also used extensively in organic synthesis (Saeed et al., 2008). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola et al., 1989). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005).

As part of our work on the structure of benzanilides and related compounds, we report here the structure of the title 2-fluorobenzamide derivative, I, Fig 1. In the structure of (I), the C2···C7 and C8···C13 rings are inclined at 27.06 (7)° and 23.86 (7)° respectively to the C2/C1/O1/N1/C8 amide portion of the molecule and at 3.46 (9)° to one another. The methoxy substituent lies close to the methoxybenzene ring plane with a maximum deviation of 0.152 (3) Å for C14. N-aryl 2-fluorobenzamide derivatives are reasonably common and bond distances and angles in the present molecule agree well with those in similar structures (see for example Saeed et al. 2008, Chopra & Guru Row, 2008, Donnelly et al. 2008, Cockroft et al. (2007), Spitaleri et al. 2004).

In the crystal structure intermolecular N1—H1N···O1 hydrogen bonds link molecules into rows along a. Weak C—H···O and C—H···F interactions further stabilize the packing, forming corrugated sheets in the bc plane (Table 1 and Fig.2).

Related literature top

For the biological activity of benzamides and related compounds and their use in organic synthesis, see: Vega-Noverola et al. (1989); Yoo et al. (2005); Saeed et al. (2008). For related structures, see: Saeed et al. (2008); Chopra & Guru Row (2008); Donnelly et al. (2008); Cockroft et al. (2007); Spitaleri et al. (2004). Cg2 is the centroid of the C3–C8 benzene ring.

Experimental top

2-Fluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 4-methoxyaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (81%) as white needles: Anal. calcd. for C14H12FNO2: C 68.56, H 4.93, N 5.71%; found: C 68.49, H 4.97, N 5.63%

Refinement top

The H atom bound to N1 was located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 hydrogen atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged and a Flack parameter is not reported.

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 (Bruker 2006) and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines and H atoms not involved in hydrogen bonding omitted.
2-Fluoro-N-(4-methoxyphenyl)benzamide top
Crystal data top
C14H12FNO2F(000) = 512
Mr = 245.25Dx = 1.458 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5036 reflections
a = 5.2901 (2) Åθ = 3.1–31.4°
b = 6.6435 (3) ŵ = 0.11 mm1
c = 31.7823 (11) ÅT = 89 K
V = 1116.98 (8) Å3Rectangular, colourless
Z = 40.30 × 0.23 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2185 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 31.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.853, Tmax = 0.996k = 89
19727 measured reflectionsl = 4645
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1314P]
where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H12FNO2V = 1116.98 (8) Å3
Mr = 245.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2901 (2) ŵ = 0.11 mm1
b = 6.6435 (3) ÅT = 89 K
c = 31.7823 (11) Å0.30 × 0.23 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2185 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1980 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.996Rint = 0.049
19727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
2185 reflectionsΔρmin = 0.24 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8287 (2)0.30490 (19)0.12515 (4)0.0120 (2)
H1N0.681 (4)0.274 (3)0.1327 (6)0.018 (5)*
C11.0253 (3)0.1910 (2)0.13830 (4)0.0122 (3)
O11.2460 (2)0.21863 (18)0.12733 (3)0.0195 (2)
C20.9628 (3)0.0195 (2)0.16750 (4)0.0113 (2)
C30.7617 (3)0.0129 (2)0.19568 (4)0.0138 (3)
F10.60670 (19)0.17461 (15)0.19944 (3)0.0211 (2)
C40.7144 (3)0.1504 (3)0.22153 (4)0.0172 (3)
H40.57460.14940.24030.021*
C50.8740 (3)0.3153 (2)0.21964 (5)0.0175 (3)
H50.84270.42950.23690.021*
C61.0809 (3)0.3137 (2)0.19238 (5)0.0176 (3)
H61.19210.42590.19120.021*
C71.1234 (3)0.1472 (2)0.16695 (4)0.0151 (3)
H71.26560.14670.14870.018*
C80.8450 (3)0.4821 (2)0.10044 (4)0.0109 (2)
C90.6527 (3)0.6247 (2)0.10514 (4)0.0124 (3)
H90.51540.59770.12360.015*
C100.6600 (3)0.8048 (2)0.08330 (4)0.0127 (3)
H100.52900.90100.08690.015*
C110.8609 (3)0.8447 (2)0.05591 (4)0.0113 (3)
C121.0490 (3)0.7011 (2)0.05019 (4)0.0120 (3)
H121.18300.72610.03100.014*
C131.0418 (3)0.5203 (2)0.07255 (4)0.0123 (3)
H131.17160.42320.06870.015*
O20.8549 (2)1.02823 (15)0.03604 (3)0.0144 (2)
C141.0690 (3)1.0759 (2)0.01050 (5)0.0159 (3)
H14A1.22331.06620.02740.024*
H14B1.05171.21320.00040.024*
H14C1.07880.98110.01310.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0097 (5)0.0108 (5)0.0155 (5)0.0003 (5)0.0019 (4)0.0030 (4)
C10.0124 (6)0.0103 (6)0.0138 (6)0.0004 (5)0.0005 (5)0.0013 (5)
O10.0117 (5)0.0212 (6)0.0255 (5)0.0005 (4)0.0013 (4)0.0099 (5)
C20.0125 (6)0.0102 (6)0.0112 (5)0.0008 (5)0.0003 (5)0.0000 (5)
C30.0124 (6)0.0157 (6)0.0132 (6)0.0011 (5)0.0009 (5)0.0002 (5)
F10.0214 (5)0.0231 (5)0.0189 (4)0.0094 (4)0.0071 (4)0.0027 (4)
C40.0154 (6)0.0228 (8)0.0134 (6)0.0033 (6)0.0003 (5)0.0036 (6)
C50.0194 (7)0.0161 (7)0.0169 (6)0.0054 (6)0.0028 (5)0.0056 (6)
C60.0198 (7)0.0132 (7)0.0200 (6)0.0019 (6)0.0024 (6)0.0027 (6)
C70.0159 (6)0.0139 (6)0.0156 (6)0.0020 (6)0.0005 (5)0.0006 (5)
C80.0117 (6)0.0087 (5)0.0122 (5)0.0001 (5)0.0013 (5)0.0005 (5)
C90.0108 (6)0.0125 (6)0.0140 (6)0.0000 (5)0.0022 (5)0.0004 (5)
C100.0116 (6)0.0114 (6)0.0150 (6)0.0013 (5)0.0006 (5)0.0002 (5)
C110.0124 (6)0.0091 (6)0.0123 (5)0.0005 (5)0.0018 (5)0.0008 (5)
C120.0110 (5)0.0123 (6)0.0127 (5)0.0003 (5)0.0010 (5)0.0009 (5)
C130.0119 (6)0.0112 (6)0.0139 (6)0.0020 (5)0.0013 (5)0.0001 (5)
O20.0145 (5)0.0108 (5)0.0178 (5)0.0019 (4)0.0029 (4)0.0042 (4)
C140.0146 (6)0.0133 (6)0.0199 (6)0.0009 (6)0.0029 (6)0.0047 (5)
Geometric parameters (Å, º) top
N1—C11.3522 (19)C8—C131.3909 (18)
N1—C81.4177 (17)C8—C91.3980 (19)
N1—H1N0.84 (2)C9—C101.3835 (19)
C1—O11.2317 (17)C9—H90.9500
C1—C21.5066 (19)C10—C111.3992 (19)
C2—C31.3914 (19)C10—H100.9500
C2—C71.396 (2)C11—O21.3734 (16)
C3—F11.3567 (17)C11—C121.3902 (19)
C3—C41.384 (2)C12—C131.3959 (19)
C4—C51.384 (2)C12—H120.9500
C4—H40.9500C13—H130.9500
C5—C61.396 (2)O2—C141.4289 (18)
C5—H50.9500C14—H14A0.9800
C6—C71.388 (2)C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—H70.9500
C1—N1—C8126.09 (12)C13—C8—N1123.38 (12)
C1—N1—H1N119.3 (14)C9—C8—N1117.36 (12)
C8—N1—H1N114.6 (14)C10—C9—C8120.82 (13)
O1—C1—N1123.93 (13)C10—C9—H9119.6
O1—C1—C2119.66 (13)C8—C9—H9119.6
N1—C1—C2116.40 (12)C9—C10—C11119.81 (13)
C3—C2—C7116.65 (13)C9—C10—H10120.1
C3—C2—C1126.02 (13)C11—C10—H10120.1
C7—C2—C1117.31 (12)O2—C11—C12124.45 (12)
F1—C3—C4117.34 (13)O2—C11—C10115.90 (12)
F1—C3—C2119.61 (13)C12—C11—C10119.66 (12)
C4—C3—C2123.02 (14)C11—C12—C13120.29 (13)
C3—C4—C5118.98 (14)C11—C12—H12119.9
C3—C4—H4120.5C13—C12—H12119.9
C5—C4—H4120.5C8—C13—C12120.13 (13)
C4—C5—C6119.95 (14)C8—C13—H13119.9
C4—C5—H5120.0C12—C13—H13119.9
C6—C5—H5120.0C11—O2—C14116.09 (11)
C7—C6—C5119.60 (14)O2—C14—H14A109.5
C7—C6—H6120.2O2—C14—H14B109.5
C5—C6—H6120.2H14A—C14—H14B109.5
C6—C7—C2121.77 (14)O2—C14—H14C109.5
C6—C7—H7119.1H14A—C14—H14C109.5
C2—C7—H7119.1H14B—C14—H14C109.5
C13—C8—C9119.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.34 (2)3.1366 (17)158.5 (17)
C4—H4···F1ii0.952.443.2472 (17)143
C14—H14B···O2iii0.982.613.3753 (18)135
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC14H12FNO2
Mr245.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)89
a, b, c (Å)5.2901 (2), 6.6435 (3), 31.7823 (11)
V3)1116.98 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.23 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.853, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
19727, 2185, 1980
Rint0.049
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.06
No. of reflections2185
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: , APEX2 (Bruker 2006) and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.34 (2)3.1366 (17)158.5 (17)
C4—H4···F1ii0.952.443.2472 (17)142.7
C14—H14B···O2iii0.982.613.3753 (18)135.1
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1/2, y+5/2, z.
 

Acknowledgements

MA gratefully acknowledges a research scholarship from the HEC, Islamabad, under the HEC Indigenous PhD Schol­arship 5000 Scheme. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationCockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G., Lawson, K. R., Urch, C. J. & Hunter, C. A. (2007). Org. Biomol. Chem. 5, 1062–1080.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322–o2323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpitaleri, A., Hunter, C. A., McCabe, J. F., Packer, M. J. & Cockroft, S. L. (2004). CrystEngComm, 6, 489–493.  Web of Science CSD CrossRef CAS Google Scholar
First citationVega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780.  Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941–6943.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o802-o803
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds