organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­thia­zolium) succinate succinic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 February 2009; accepted 25 February 2009; online 14 March 2009)

In the title compound, 2C3H5N2S+·C4H4O42−·C4H6O4, the thia­zolium ring is almost planar, with the maximum deviation from planarity being 0.0056 (8) Å for the C atom carrying the amine substituent. The N atom of the 2-amino­thia­zole mol­ecule is protonated. Both the anion and the acid lie across inversion centres. The crystal packing is consolidated by inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. Mol­ecules are stacked down the b axis.

Related literature

For the structure of 2-amino­thia­zole, see: Caranoni & Reboul (1982[Caranoni, C. & Reboul, J. P. (1982). Acta Cryst. B38, 1255-1259.]). For applications of 2-amino­thia­zole, see: Saarnivaara & Matilla (1974[Saarnivaara, L. & Matilla, K. J. (1974). Psychopharmacology (Berl), 35, 221-236.]); Windholz (2001[Windholz, M. (2001). The Merck Index, 13th ed. Boca Raton, USA: Merck & Co. Inc.]). For the structure of succinic acid, see: Gopalan et al. (2000[Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97-106.]); Leviel et al. (1981[Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185-2189.]). For applications of succinic acid, see: Sauer et al. (2008[Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100-108.]); Song & Lee (2006[Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352-361.]); Zeikus et al. (1999[Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545-552.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H5N2S+·C4H4O42−·C4H6O4

  • Mr = 436.46

  • Monoclinic, P 21 /n

  • a = 10.1680 (2) Å

  • b = 5.1012 (1) Å

  • c = 18.3850 (4) Å

  • β = 105.961 (1)°

  • V = 916.85 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.58 × 0.42 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 0.897

  • 16689 measured reflections

  • 3691 independent reflections

  • 3442 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.04

  • 3691 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.868 (15) 1.974 (15) 2.8156 (9) 163.0 (14)
N2—H2N2⋯O1ii 0.889 (14) 1.959 (13) 2.8297 (9) 165.7 (13)
N1—H1N1⋯O2i 0.865 (14) 1.823 (14) 2.6868 (8) 176.2 (15)
O3—H1O3⋯O2ii 0.888 (19) 1.696 (19) 2.5820 (8) 176.5 (19)
C1—H1⋯O4iii 0.985 (13) 2.431 (14) 3.3086 (10) 148.2 (12)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminothiazole derivatives have shown heribicidal, anti-inflammatory, anti-microbial and antiparasitic activities (Saarnivaara & Matilla, 1974). 2-Aminothiazole is listed as a thyroid inhibitor (Windholz, 2001). The orthorhombic form of 2-amino-1,3-thiazole has been reported (Caranoni & Reboul, 1982). Succinic acid is a dicarboxylic acid and is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al. 1981). Due to all these important properties, the title compound (I) has been synthesized and is reported here.

The asymmetric unit of (I) (Fig. 1) contains one molecule of protonated 2-aminothiazole, a half molecule of succinate and a half molecule of succinic acid. The anion and the acid lie across different inversion centres [symmetry codes (i) -x + 1, -y + 2, -z and (ii) -x + 2, -y + 2, -z respectively]. The thiazolium ring is planar with the maximum deviation from planarity being 0.0056 (8)Å for atom C3. The ring nitrogen of the 2-aminothiazole molecule is protonated thereby leading to a widening of the corresponding internal angle (C2–N1–C3) of the thiazolium ring to 113.99 (6)° [which is 109.4 (5)° in the unprotonated form of 2-aminothiazole] and an increase in the bond lengths of N1–C3 to 1.334 (9)Å and N1–C2 to 1.387 (9)Å [which are 1.298 (6)Å and 1.375 (6)Å respectively in its uncomplexed form] (Caranoni & Reboul, 1982). An increase in the C1–S1–C3 bond angle to 90.47 (3)° [which is 88.6 (3)° in the unprotonated form] and a decrease in the S1–C3–N1 bond angle to 111.38 (5)° [which is 114.9 (5)° in the uncomplexed form of 2-aminothiazole] (Caranoni & Reboul, 1982) are also observed.

The bond lengths and bond angles of the succinate and succinic acid are found to have normal values (Gopalan et al., 2000; Leviel & Auvert, 1981). The crystal packing is consolidated by O—H···O, N—H···O and C—H···O intermolecular hydrogen bonds (Table 1) together with intermolecular [O—Oi = 2.5820 (8) Å; O—Nii-iii = 2.6868 (8) to 2.8297 (9) Å, short contacts [symmetry code: (i) x,-1 + y,z; (ii) 3/2 - x,1/2 + y,1/2 - z; (iii) x,1 + y,z]. Molecules are stacked down the b axis(Fig.2).

Related literature top

For the structure of 2-aminothiazole, see: Caranoni & Reboul (1982). For applications of 2-aminothiazole, see: Saarnivaara & Matilla (1974); Windholz (2001). For the structure of succinic acid, see: Gopalan et al. (2000); Leviel et al. (1981). For applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2- Aminothiazole (0.100 g, 1 mmol) and succinic acid (0.118 g, 1 mmol) were dissolved in ethanol (25 ml) in a 1:1 molar ratio. The clear brown solution obtained was refluxed for 6 h at a temperature of 323 K. Brown coloured crystals were harvested after two weeks on slow evaporation of the solvent.

Refinement top

All the hydrogen atoms were located from the Fourier map and were allowed to refine freely with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. [symmetry operators used to generate equivalent atoms are (i) -x + 1, -y + 2, -z and (ii) -x + 2, -y + 2, -z for the anion and acid respectively].
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate the hydrogen bonding.
Bis(2-aminothiazolium) succinate succinic acid solvate top
Crystal data top
2C3H5N2S+·C4H4O42·C4H6O4F(000) = 456
Mr = 436.46Dx = 1.581 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9994 reflections
a = 10.1680 (2) Åθ = 2.3–40.1°
b = 5.1012 (1) ŵ = 0.34 mm1
c = 18.3850 (4) ÅT = 100 K
β = 105.961 (1)°Block, yellow
V = 916.85 (3) Å30.58 × 0.42 × 0.32 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3691 independent reflections
Radiation source: fine-focus sealed tube3442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 34.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.826, Tmax = 0.897k = 77
16689 measured reflectionsl = 2824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.077All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2556P]
where P = (Fo2 + 2Fc2)/3
3691 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
2C3H5N2S+·C4H4O42·C4H6O4V = 916.85 (3) Å3
Mr = 436.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1680 (2) ŵ = 0.34 mm1
b = 5.1012 (1) ÅT = 100 K
c = 18.3850 (4) Å0.58 × 0.42 × 0.32 mm
β = 105.961 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3691 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3442 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.897Rint = 0.022
16689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.04Δρmax = 0.45 e Å3
3691 reflectionsΔρmin = 0.35 e Å3
167 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.398521 (18)0.38496 (4)0.154349 (10)0.01603 (6)
O10.64045 (5)0.89655 (11)0.12963 (3)0.01367 (10)
O20.77343 (5)1.19344 (12)0.09559 (3)0.01562 (10)
O30.80012 (6)0.57645 (12)0.00894 (3)0.01703 (11)
O40.99583 (6)0.66022 (12)0.09808 (3)0.01646 (11)
N10.52407 (6)0.60443 (12)0.27794 (3)0.01361 (11)
N20.63526 (6)0.22575 (14)0.25269 (4)0.01565 (12)
C10.32820 (7)0.66562 (16)0.18253 (4)0.01749 (13)
C20.40776 (7)0.75502 (15)0.24905 (4)0.01599 (13)
C30.53433 (7)0.39842 (14)0.23509 (4)0.01261 (12)
C40.66461 (6)1.05440 (14)0.08264 (4)0.01101 (11)
C50.56100 (7)1.09079 (14)0.00653 (4)0.01307 (12)
C60.91584 (7)0.70771 (13)0.03682 (4)0.01173 (11)
C70.93722 (7)0.91684 (14)0.01673 (4)0.01291 (12)
H10.2400 (13)0.731 (3)0.1506 (7)0.027 (3)*
H20.3948 (13)0.900 (2)0.2779 (7)0.023 (3)*
H7A0.8557 (13)1.025 (3)0.0314 (7)0.023 (3)*
H7B0.9449 (13)0.826 (3)0.0630 (7)0.025 (3)*
H1N20.7022 (15)0.248 (3)0.2933 (8)0.035 (4)*
H2N20.6384 (13)0.100 (3)0.2197 (7)0.025 (3)*
H1C50.6093 (14)1.070 (3)0.0333 (8)0.030 (3)*
H2C50.5330 (13)1.280 (3)0.0047 (8)0.030 (3)*
H1N10.5877 (14)0.640 (3)0.3188 (8)0.031 (3)*
H1O30.7940 (17)0.447 (4)0.0401 (9)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01505 (8)0.01672 (9)0.01227 (8)0.00239 (5)0.00303 (6)0.00025 (5)
O10.0141 (2)0.0152 (2)0.0103 (2)0.00308 (17)0.00095 (16)0.00264 (16)
O20.0127 (2)0.0175 (2)0.0136 (2)0.00582 (18)0.00159 (17)0.00353 (18)
O30.0150 (2)0.0181 (3)0.0151 (2)0.00693 (18)0.00061 (18)0.00485 (19)
O40.0145 (2)0.0178 (2)0.0146 (2)0.00236 (18)0.00011 (18)0.00380 (19)
N10.0128 (2)0.0147 (3)0.0116 (2)0.00017 (19)0.00047 (19)0.00062 (19)
N20.0141 (2)0.0176 (3)0.0128 (2)0.0022 (2)0.0003 (2)0.0030 (2)
C10.0137 (3)0.0171 (3)0.0189 (3)0.0001 (2)0.0001 (2)0.0044 (3)
C20.0141 (3)0.0152 (3)0.0179 (3)0.0014 (2)0.0031 (2)0.0022 (2)
C30.0119 (3)0.0143 (3)0.0102 (2)0.0016 (2)0.0008 (2)0.0004 (2)
C40.0106 (2)0.0116 (3)0.0097 (2)0.0009 (2)0.00098 (19)0.0002 (2)
C50.0115 (2)0.0153 (3)0.0101 (2)0.0035 (2)0.0009 (2)0.0027 (2)
C60.0113 (2)0.0111 (3)0.0127 (3)0.0006 (2)0.0032 (2)0.0002 (2)
C70.0129 (3)0.0129 (3)0.0122 (3)0.0022 (2)0.0023 (2)0.0018 (2)
Geometric parameters (Å, º) top
S1—C31.7285 (7)N2—H2N20.888 (13)
S1—C11.7416 (9)C1—C21.3468 (11)
O1—C41.2538 (8)C1—H10.986 (13)
O2—C41.2802 (8)C2—H20.941 (13)
O3—C61.3281 (8)C4—C51.5139 (9)
O3—H1O30.887 (18)C5—C5i1.5135 (14)
O4—C61.2185 (8)C5—H1C50.993 (14)
N1—C31.3346 (9)C5—H2C51.003 (14)
N1—C21.3877 (9)C6—C71.5075 (10)
N1—H1N10.864 (14)C7—C7ii1.5153 (14)
N2—C31.3233 (9)C7—H7A0.970 (13)
N2—H1N20.868 (15)C7—H7B0.989 (13)
C3—S1—C190.47 (3)O1—C4—C5119.82 (6)
C6—O3—H1O3109.7 (10)O2—C4—C5116.75 (6)
C3—N1—C2113.99 (6)C5i—C5—C4113.78 (7)
C3—N1—H1N1121.0 (9)C5i—C5—H1C5111.6 (8)
C2—N1—H1N1125.0 (9)C4—C5—H1C5108.0 (8)
C3—N2—H1N2119.6 (10)C5i—C5—H2C5111.7 (8)
C3—N2—H2N2118.9 (8)C4—C5—H2C5105.5 (8)
H1N2—N2—H2N2121.0 (13)H1C5—C5—H2C5105.7 (11)
C2—C1—S1110.81 (6)O4—C6—O3123.50 (6)
C2—C1—H1130.3 (8)O4—C6—C7124.39 (6)
S1—C1—H1118.9 (8)O3—C6—C7112.10 (6)
C1—C2—N1113.33 (7)C6—C7—C7ii112.82 (7)
C1—C2—H2129.5 (8)C6—C7—H7A108.6 (7)
N1—C2—H2117.2 (8)C7ii—C7—H7A110.8 (8)
N2—C3—N1124.12 (6)C6—C7—H7B106.9 (8)
N2—C3—S1124.49 (5)C7ii—C7—H7B110.7 (7)
N1—C3—S1111.38 (5)H7A—C7—H7B106.8 (10)
O1—C4—O2123.42 (6)
C3—S1—C1—C20.33 (6)C1—S1—C3—N10.78 (6)
S1—C1—C2—N10.18 (9)O1—C4—C5—C5i4.29 (11)
C3—N1—C2—C10.80 (9)O2—C4—C5—C5i176.67 (8)
C2—N1—C3—N2178.46 (7)O4—C6—C7—C7ii5.84 (12)
C2—N1—C3—S11.04 (8)O3—C6—C7—C7ii175.31 (7)
C1—S1—C3—N2178.72 (7)
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1iii0.868 (15)1.974 (15)2.8156 (9)163.0 (14)
N2—H2N2···O1iv0.889 (14)1.959 (13)2.8297 (9)165.7 (13)
N1—H1N1···O2iii0.865 (14)1.823 (14)2.6868 (8)176.2 (15)
O3—H1O3···O2iv0.888 (19)1.696 (19)2.5820 (8)176.5 (19)
C1—H1···O4v0.985 (13)2.431 (14)3.3086 (10)148.2 (12)
Symmetry codes: (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula2C3H5N2S+·C4H4O42·C4H6O4
Mr436.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.1680 (2), 5.1012 (1), 18.3850 (4)
β (°) 105.961 (1)
V3)916.85 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.58 × 0.42 × 0.32
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.826, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
16689, 3691, 3442
Rint0.022
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.04
No. of reflections3691
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.868 (15)1.974 (15)2.8156 (9)163.0 (14)
N2—H2N2···O1ii0.889 (14)1.959 (13)2.8297 (9)165.7 (13)
N1—H1N1···O2i0.865 (14)1.823 (14)2.6868 (8)176.2 (15)
O3—H1O3···O2ii0.888 (19)1.696 (19)2.5820 (8)176.5 (19)
C1—H1···O4iii0.985 (13)2.431 (14)3.3086 (10)148.2 (12)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x1, y, z.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No.1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaranoni, C. & Reboul, J. P. (1982). Acta Cryst. B38, 1255–1259.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.  Google Scholar
First citationLeviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaarnivaara, L. & Matilla, K. J. (1974). Psychopharmacology (Berl), 35, 221–236.  CrossRef CAS Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352–361.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindholz, M. (2001). The Merck Index, 13th ed. Boca Raton, USA: Merck & Co. Inc.  Google Scholar
First citationZeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545–552.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds