organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3-Fluoro­benzyl­­idene)-2-hy­droxy­benzohydrazide

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China
*Correspondence e-mail: shaosic@fync.edu.cn

(Received 19 February 2009; accepted 25 February 2009; online 6 March 2009)

The title compound, C14H11FN2O2, adopts an E or trans configuration with respect to the C=N bond. An intra­molecular N—H⋯O hydrogen bond contributes to the relatively planarity of the mol­ecular conformation; the two benzene rings are inclined to one another by 12.5 (2)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains running parallel to the c axis.

Related literature

For the potential pharmacological and anti­tumor properties of hydrazones and Schiff bases, see: Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FN2O2

  • Mr = 258.25

  • Monoclinic, P 21 /n

  • a = 4.8751 (15) Å

  • b = 22.188 (7) Å

  • c = 11.323 (3) Å

  • β = 96.717 (5)°

  • V = 1216.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 297 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.989

  • 8534 measured reflections

  • 2152 independent reflections

  • 1205 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.240

  • S = 1.05

  • 2152 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.86 1.91 2.612 (5) 138
O1—H1O⋯O2i 0.82 1.86 2.657 (5) 166
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). As part of an ongoing study of such compounds, we report here on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. It can be seen to display a trans configuration about the C=N bond. There is an intramolecular N-H···O hydrogen bond, involving the NH H-atom and the O-atom of the hydroxyl substituent (Table 1), and the dihedral angle between the two benzene rings is 12.5 (2)°.

In the crystal molecules are linked by intermolecular O—H···O hydrongen bonds to form chains running parallel to the c axis (Fig. 2 and Table 1).

Related literature top

For the potential pharmacological and antitumor properties of hydrazones and Schiff bases, see: Karthikeyan et al. (2006); Khattab (2005); Kucukguzel et al. (2006); Okabe et al. (1993).

Experimental top

Equimolar amounts of 2-Hydroxybenzohydrazide and 3-fluorobenzohydrazide were reacted in ethanol (10 ml) for 1 h. After allowing the resulting solution to stand in air for 10 days yellow block-shaped crystals were formed, on slow evaporation of the solvent.

Refinement top

Phenyl ring C9-C14 was treated as a regular hexagon, and refined as a rigid body. The F-atom was found to be disordered over two positions, F1/F1', and given occupancies of 0.5/0.5. The H-atoms at C11 and C13 were also given occupancies of 0.5/0.5. All the H-atoms were placed in calculated positions and treated as riding: O-H = 0.82 Å, N-H = 0.86 Å, C-H = 0.93 Å, with Uiso(H) = 1.5Ueq(parent O and N-atom, and = 1.2Ueq(parent C-atom).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H-atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing viewed along the A axis. The intra- and intermolecular hydrogen bonds are shown as dashed lines (details are given in Table 1).
(E)-N'-(3-Fluorobenzylidene)-2-hydroxybenzohydrazide top
Crystal data top
C14H11FN2O2F(000) = 536
Mr = 258.25Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 589 reflections
a = 4.8751 (15) Åθ = 2.3–15°
b = 22.188 (7) ŵ = 0.11 mm1
c = 11.323 (3) ÅT = 297 K
β = 96.717 (5)°Block, yellow
V = 1216.4 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2152 independent reflections
Radiation source: fine-focus sealed tube1205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.979, Tmax = 0.989k = 2626
8534 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1113P)2 + 0.2945P]
where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max = 0.002
170 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H11FN2O2V = 1216.4 (6) Å3
Mr = 258.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8751 (15) ŵ = 0.11 mm1
b = 22.188 (7) ÅT = 297 K
c = 11.323 (3) Å0.20 × 0.10 × 0.10 mm
β = 96.717 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2152 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1205 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.989Rint = 0.081
8534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2152 reflectionsΔρmin = 0.30 e Å3
170 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.2554 (15)0.0383 (3)0.4844 (5)0.103 (3)0.500
F1'0.3673 (19)0.0122 (3)0.0916 (6)0.136 (4)0.500
O10.8661 (7)0.26546 (15)0.1078 (3)0.0638 (11)
O20.7116 (7)0.27530 (14)0.4613 (2)0.0643 (11)
N10.5969 (8)0.23163 (16)0.2828 (3)0.0518 (12)
N20.4125 (7)0.19142 (17)0.3234 (3)0.0490 (12)
C10.9330 (8)0.31131 (19)0.3001 (4)0.0443 (12)
C21.0667 (10)0.3559 (2)0.3713 (4)0.0563 (16)
C31.2548 (11)0.3939 (2)0.3302 (4)0.0658 (19)
C41.3165 (10)0.3890 (2)0.2158 (4)0.0601 (17)
C51.1869 (9)0.34596 (19)0.1418 (4)0.0527 (17)
C60.9959 (8)0.30710 (19)0.1824 (3)0.0433 (14)
C70.7399 (9)0.27175 (19)0.3545 (4)0.0465 (17)
C80.2866 (9)0.1604 (2)0.2415 (4)0.0524 (17)
C90.0844 (6)0.11357 (12)0.2623 (3)0.0497 (17)
C100.0213 (6)0.09879 (13)0.3754 (2)0.0520 (16)
C110.1728 (7)0.05426 (14)0.3894 (3)0.067 (2)
C120.3037 (6)0.02449 (13)0.2905 (4)0.0750 (19)
C130.2406 (7)0.03926 (15)0.1774 (3)0.083 (2)
C140.0466 (7)0.08380 (16)0.1634 (2)0.073 (2)
H1N0.621000.230900.208700.0620*
H1O0.962100.257700.055000.0950*
H21.026900.360100.449300.0680*
H31.341300.423200.380300.0790*
H41.445600.414700.188100.0720*
H51.227700.342900.063800.0630*
H80.323000.167400.163900.0630*
H100.108900.118700.441600.0620*
H110.215000.044400.465100.0800*0.500
H120.433500.005300.299900.0900*
H130.328200.019300.111200.0990*0.500
H140.004400.093700.087700.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.145 (6)0.094 (5)0.080 (4)0.033 (5)0.054 (4)0.006 (4)
F1'0.184 (8)0.138 (6)0.075 (4)0.103 (6)0.026 (5)0.006 (4)
O10.076 (2)0.075 (2)0.0473 (19)0.0178 (19)0.0363 (16)0.0120 (17)
O20.081 (2)0.075 (2)0.0416 (18)0.0068 (18)0.0274 (17)0.0018 (15)
N10.063 (2)0.056 (2)0.041 (2)0.005 (2)0.0255 (19)0.0029 (18)
N20.051 (2)0.053 (2)0.047 (2)0.003 (2)0.0222 (18)0.0074 (19)
C10.045 (2)0.042 (2)0.048 (2)0.011 (2)0.014 (2)0.006 (2)
C20.074 (3)0.053 (3)0.044 (2)0.001 (3)0.016 (2)0.002 (2)
C30.080 (4)0.053 (3)0.064 (3)0.013 (3)0.007 (3)0.000 (3)
C40.061 (3)0.062 (3)0.059 (3)0.008 (3)0.014 (2)0.011 (3)
C50.061 (3)0.050 (3)0.051 (3)0.002 (2)0.023 (2)0.007 (2)
C60.047 (3)0.045 (2)0.040 (2)0.004 (2)0.014 (2)0.004 (2)
C70.054 (3)0.048 (3)0.041 (3)0.013 (2)0.021 (2)0.001 (2)
C80.058 (3)0.059 (3)0.042 (3)0.009 (3)0.014 (2)0.009 (2)
C90.052 (3)0.047 (3)0.052 (3)0.009 (2)0.014 (2)0.005 (2)
C100.061 (3)0.041 (2)0.057 (3)0.002 (2)0.019 (2)0.000 (2)
C110.076 (4)0.049 (3)0.080 (4)0.001 (3)0.031 (3)0.006 (3)
C120.060 (3)0.055 (3)0.111 (4)0.004 (3)0.014 (3)0.008 (3)
C130.085 (4)0.077 (4)0.085 (4)0.017 (3)0.004 (3)0.001 (3)
C140.078 (4)0.084 (4)0.055 (3)0.012 (3)0.003 (3)0.005 (3)
Geometric parameters (Å, º) top
F1'—C131.243 (8)C9—C101.3908
F1—C111.243 (7)C9—C141.3896
O1—C61.357 (5)C10—C111.3899
O2—C71.236 (5)C11—C121.3894
O1—H1O0.8200C12—C131.3908
N1—N21.383 (5)C13—C141.3897
N1—C71.344 (6)C2—H20.9300
N2—C81.256 (6)C3—H30.9300
N1—H1N0.8600C4—H40.9300
C1—C71.474 (6)C5—H50.9300
C1—C21.390 (6)C8—H80.9300
C1—C61.405 (6)C10—H100.9300
C2—C31.367 (7)C11—H110.9300
C3—C41.368 (6)C12—H120.9300
C4—C51.375 (6)C13—H130.9300
C5—C61.386 (6)C14—H140.9300
C8—C91.470 (5)
C6—O1—H1O109.00C11—C12—C13120.00
N2—N1—C7122.6 (3)C12—C13—C14119.96
N1—N2—C8112.9 (3)F1'—C13—C12117.6 (5)
C7—N1—H1N119.00F1'—C13—C14122.5 (4)
N2—N1—H1N119.00C9—C14—C13120.06
C6—C1—C7125.3 (4)C1—C2—H2119.00
C2—C1—C7117.4 (4)C3—C2—H2119.00
C2—C1—C6117.3 (4)C2—C3—H3120.00
C1—C2—C3122.0 (4)C4—C3—H3120.00
C2—C3—C4120.3 (4)C3—C4—H4120.00
C3—C4—C5119.7 (4)C5—C4—H4120.00
C4—C5—C6120.6 (4)C4—C5—H5120.00
C1—C6—C5120.2 (4)C6—C5—H5120.00
O1—C6—C1119.9 (4)N2—C8—H8118.00
O1—C6—C5120.0 (3)C9—C8—H8118.00
O2—C7—N1121.6 (4)C9—C10—H10120.00
O2—C7—C1121.4 (4)C11—C10—H10120.00
N1—C7—C1117.0 (4)C10—C11—H11120.00
N2—C8—C9123.2 (4)C12—C11—H11120.00
C10—C9—C14119.98C11—C12—H12120.00
C8—C9—C14117.4 (3)C13—C12—H12120.00
C8—C9—C10122.6 (3)C12—C13—H13120.00
C9—C10—C11119.97C14—C13—H13120.00
F1—C11—C10126.5 (4)C9—C14—H14120.00
C10—C11—C12120.04C13—C14—H14120.00
F1—C11—C12113.4 (4)
C7—N1—N2—C8175.7 (4)C4—C5—C6—O1178.9 (4)
N2—N1—C7—O20.8 (7)C4—C5—C6—C10.1 (6)
N2—N1—C7—C1179.0 (4)N2—C8—C9—C101.7 (6)
N1—N2—C8—C9178.6 (4)N2—C8—C9—C14178.1 (4)
C2—C1—C6—C50.8 (6)C8—C9—C10—C11179.7 (3)
C7—C1—C6—O12.7 (6)C14—C9—C10—C110.02
C7—C1—C6—C5178.3 (4)C8—C9—C14—C13179.7 (3)
C2—C1—C7—O24.8 (6)C10—C9—C14—C130.03
C2—C1—C7—N1175.4 (4)C9—C10—C11—F1177.2 (5)
C6—C1—C7—O2174.3 (4)C9—C10—C11—C120.03
C6—C1—C7—N15.5 (6)F1—C11—C12—C13177.5 (4)
C2—C1—C6—O1178.2 (4)C10—C11—C12—C130.02
C6—C1—C2—C30.8 (7)C11—C12—C13—F1'178.6 (5)
C7—C1—C2—C3178.3 (4)C11—C12—C13—C140.02
C1—C2—C3—C40.2 (7)F1'—C13—C14—C9178.5 (5)
C2—C3—C4—C50.5 (7)C12—C13—C14—C90.03
C3—C4—C5—C60.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.861.912.612 (5)138
O1—H1O···O2i0.821.862.657 (5)166
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11FN2O2
Mr258.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)4.8751 (15), 22.188 (7), 11.323 (3)
β (°) 96.717 (5)
V3)1216.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8534, 2152, 1205
Rint0.081
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.240, 1.05
No. of reflections2152
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.861.912.612 (5)138
O1—H1O···O2i0.821.862.657 (5)166
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Key Project of Science and Technology of Anhui, P. R. China (grant No. 08010302218).

References

First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds