metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­(aceto­nitrile-κN)bis­­[μ2-2,2′-(methyl­enedi­thio)bis­­(1,3,4-thia­diazole)-κ2N4:N4′]copper(II)] bis­­(perchlorate) aceto­nitrile solvate]

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 2 March 2009; accepted 10 March 2009; online 19 March 2009)

In the title compound, {[Cu(C5H4N4S4)2(C2H3N)2](ClO4)2·C2H3N}n, the CuII atom occupies a crystallographic inversion centre and is six-coordinated by six N atoms of four symmetry-related 2,2′-(methyl­enedithio)bis­(1,3,4-thia­diazole) (L) ligands and two acetonitrile mol­ecules in a slightly distorted octa­hedral geometry. The ligand L adopts an N:N′-bidentate bridging mode in a trans configuration, bridging the Cu atoms via translation symmetry, forming a two-dimensional layer-like structure. The perchlorate ions serve as acceptors for inter­molecular C—H⋯O hydrogen bonds, which link the layers into a three-dimensional network. The ClO4 anion is disordered with an occupation ratio of 0.658:0.342.

Related literature

For literature on Cu—N bonds, see: Huang et al. (2009[Huang, H.-M., Ju, F.-Y., Wang, J.-G. & Qin, J.-H. (2009). Acta Cryst. E65, m80-m81.]); Qin et al. (2009[Qin, J.-H., Wang, J.-G. & Hu, P.-Z. (2009). Acta Cryst. E65, m349-m350.]); Wang et al. (2008[Wang, J. G., Qin, J. H., Hu, P. Z. & Zhao, B. T. (2008). Z. Kristallogr. New Cryst. Struct. 223, 225-227.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H4N4S4)2(C2H3N)2](ClO4)2·C2H3N

  • Mr = 1764.65

  • Monoclinic, C 2/c

  • a = 19.3144 (18) Å

  • b = 9.9450 (9) Å

  • c = 18.8722 (18) Å

  • β = 98.876 (1)°

  • V = 3581.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 294 K

  • 0.43 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.608, Tmax = 0.702

  • 12066 measured reflections

  • 3285 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.181

  • S = 1.07

  • 3285 reflections

  • 216 parameters

  • 304 restraints

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.93 2.35 2.955 (8) 123
C3—H3A⋯O1ii 0.97 2.41 3.277 (9) 149
C5—H5⋯O1iii 0.93 2.45 3.169 (9) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound consists of half a CuII atom, two independent 2,2'-(methylenedithio)bis(1,3,4-thiadiazole) (L) ligands, one coordinated acetonitrile molecule, one uncoordinated acetonitrile molecule, and one perchlorate ion (Fig. 1). The CuII atom is coordinated by six N atoms, from four L ligands and two acetonitrile molecules, in a slightly distorted octahedral geometry. All six Cu—N bond distances are within the range expected for such coordination bonds (Huang et al., 2009; Wang et al., 2008; Qin et al., 2009). The ligand L adopts a N:N'-bidentate bridging mode in trans configuration, so bridging the copper atoms via translation symmetry to form a two-dimensional layer-like structure, with a bridging Cu···Cu distance of 10.6661 (8) Å (Fig. 2). The centroid-centroid separation and dihedral angle of the thiadiazole rings are 6.3928 (5) Å and 81.86 (13)°, respectively.

In the crystal structure the region between the layes is taken up by perchlorate ions and uncoordinated acetonitrile molecules. The perchlorate ions serve as acceptors for C—H···O hydrogen-bonds, which link the chains into a three-dimensional network (Table 1 and Fig. 3).

Related literature top

For literature on Cu—N bonds, see: Huang et al. (2009); Qin et al. (2009); Wang et al. (2008).

Experimental top

The reaction of 2,2'-(methylenedithio)bis(1,3,4-thiadiazole) (0.2 mmol) with Cu(ClO4)2 (0.1 mmol) in an acetonitrile solution (20 ml) afforded a light blue solid after a few minutes. It was filtered off, washed with acetone, and dried in air. Single crystals, suitable for X-ray analysis, were obtained by slow diffusion of Et2O into an acetonitrile solution of the solid.

Refinement top

All H-atoms were positioned geometrically and treated as riding: C—H = 0.93 - 09.7 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms, perchlorate ion, and uncoordinated acetonitrile molecules were omitted for clarity [symmetry operations: A: 1/2-x, 3/2-y, -z; B: 1/2-x, -1/2+y, 1/2-z; C: x, 2-y, -1/2+z].
[Figure 2] Fig. 2. A view of the two-dimensional network in the title compound.
[Figure 3] Fig. 3. A view down the b axis of the crystal packing of the title compound.
Poly[[bis(acetonitrile-κN)bis[µ2-2,2'-(methylenedithio)bis(1,3,4- thiadiazole)-κ2N4:N4']copper(II)] bis(perchlorate) acetonitrile solvate] top
Crystal data top
[Cu(C5H4N4S4)2(C2H3N)2](ClO4)2·C2H3NF(000) = 1780
Mr = 1764.65Dx = 1.636 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5001 reflections
a = 19.3144 (18) Åθ = 2.3–28.0°
b = 9.9450 (9) ŵ = 1.28 mm1
c = 18.8722 (18) ÅT = 294 K
β = 98.876 (1)°Block, blue
V = 3581.6 (6) Å30.43 × 0.32 × 0.30 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3285 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2323
Tmin = 0.608, Tmax = 0.702k = 1212
12066 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1007P)2 + 13.6762P]
where P = (Fo2 + 2Fc2)/3
3285 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.86 e Å3
304 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cu(C5H4N4S4)2(C2H3N)2](ClO4)2·C2H3NV = 3581.6 (6) Å3
Mr = 1764.65Z = 2
Monoclinic, C2/cMo Kα radiation
a = 19.3144 (18) ŵ = 1.28 mm1
b = 9.9450 (9) ÅT = 294 K
c = 18.8722 (18) Å0.43 × 0.32 × 0.30 mm
β = 98.876 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2568 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.702Rint = 0.021
12066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057304 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1007P)2 + 13.6762P]
where P = (Fo2 + 2Fc2)/3
3285 reflectionsΔρmax = 0.86 e Å3
216 parametersΔρmin = 0.83 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.40159 (11)0.1887 (3)0.92446 (12)0.1040 (7)0.658 (6)
O10.3842 (4)0.3266 (6)0.9249 (4)0.135 (2)0.658 (6)
O20.3626 (4)0.1399 (7)0.8620 (4)0.146 (3)0.658 (6)
O30.4718 (3)0.1679 (9)0.9382 (4)0.139 (2)0.658 (6)
O40.3720 (5)0.1390 (8)0.9838 (4)0.150 (3)0.658 (6)
Cl1'0.40159 (11)0.1887 (3)0.92446 (12)0.1040 (7)0.342 (6)
O1'0.3333 (3)0.2118 (9)0.9325 (5)0.135 (2)0.342 (6)
O2'0.4400 (4)0.0929 (7)0.9670 (4)0.146 (3)0.342 (6)
O3'0.4391 (4)0.3116 (7)0.9371 (5)0.139 (2)0.342 (6)
O4'0.4083 (5)0.1678 (8)0.8518 (3)0.150 (3)0.342 (6)
Cu10.25000.75000.00000.0403 (3)
S10.41916 (9)0.9410 (2)0.16187 (11)0.0858 (6)
S20.32021 (8)1.10571 (14)0.23555 (7)0.0551 (4)
S30.18788 (8)0.94899 (14)0.24653 (6)0.0542 (4)
S40.17640 (9)0.85456 (14)0.39769 (7)0.0584 (4)
N10.3156 (2)0.8589 (4)0.07448 (19)0.0424 (9)
N20.2872 (2)0.9444 (4)0.12019 (19)0.0421 (9)
N30.2193 (2)1.0883 (4)0.36936 (19)0.0445 (9)
N40.2208 (2)1.0822 (4)0.44266 (19)0.0425 (9)
N50.1534 (3)0.7792 (6)0.0641 (3)0.0662 (13)
C10.3821 (3)0.8491 (7)0.0899 (3)0.0651 (16)
H10.40840.79550.06370.078*
C20.3356 (3)0.9939 (5)0.1685 (2)0.0454 (11)
C30.2265 (3)1.1032 (5)0.2201 (3)0.0498 (12)
H3A0.21051.11810.16940.060*
H3B0.20951.17730.24610.060*
C40.1974 (3)0.9770 (5)0.3392 (2)0.0410 (10)
C50.1996 (3)0.9686 (5)0.4642 (3)0.0509 (13)
H50.19730.95050.51210.061*
C60.1050 (4)0.7464 (9)0.0852 (4)0.088 (2)
C70.0400 (6)0.6925 (15)0.1112 (7)0.144 (4)
H7A0.00060.73750.08650.216*
H7B0.04340.70830.16180.216*
H7C0.03610.59770.10190.216*
N61.000 (2)0.171 (2)0.2314 (17)0.212 (10)0.50
C80.9970 (14)0.059 (2)0.2284 (11)0.208 (11)0.50
C90.993 (2)0.093 (2)0.2242 (18)0.204 (11)0.50
H9A1.04000.12960.23000.306*0.50
H9B0.96960.12700.26170.306*0.50
H9C0.96820.11990.17850.306*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0787 (12)0.1298 (17)0.0987 (14)0.0298 (12)0.0016 (10)0.0166 (13)
O10.118 (4)0.147 (4)0.137 (4)0.040 (4)0.012 (4)0.018 (4)
O20.136 (5)0.150 (4)0.141 (4)0.019 (4)0.016 (4)0.013 (4)
O30.105 (4)0.156 (4)0.156 (5)0.017 (4)0.018 (4)0.001 (4)
O40.141 (5)0.173 (5)0.138 (4)0.009 (4)0.036 (4)0.000 (4)
Cl1'0.0787 (12)0.1298 (17)0.0987 (14)0.0298 (12)0.0016 (10)0.0166 (13)
O1'0.118 (4)0.147 (4)0.137 (4)0.040 (4)0.012 (4)0.018 (4)
O2'0.136 (5)0.150 (4)0.141 (4)0.019 (4)0.016 (4)0.013 (4)
O3'0.105 (4)0.156 (4)0.156 (5)0.017 (4)0.018 (4)0.001 (4)
O4'0.141 (5)0.173 (5)0.138 (4)0.009 (4)0.036 (4)0.000 (4)
Cu10.0650 (6)0.0348 (4)0.0214 (4)0.0057 (3)0.0075 (3)0.0001 (3)
S10.0569 (9)0.1161 (16)0.0808 (12)0.0020 (9)0.0006 (8)0.0383 (11)
S20.0796 (9)0.0467 (7)0.0378 (7)0.0078 (6)0.0053 (6)0.0117 (5)
S30.0840 (10)0.0491 (7)0.0300 (6)0.0130 (6)0.0106 (6)0.0096 (5)
S40.0932 (11)0.0443 (7)0.0401 (7)0.0216 (7)0.0176 (7)0.0046 (5)
N10.058 (3)0.042 (2)0.0291 (18)0.0056 (18)0.0118 (17)0.0004 (16)
N20.058 (2)0.039 (2)0.0292 (18)0.0026 (18)0.0076 (17)0.0023 (15)
N30.067 (3)0.041 (2)0.0275 (18)0.0069 (19)0.0127 (17)0.0023 (16)
N40.064 (3)0.040 (2)0.0253 (18)0.0051 (18)0.0104 (17)0.0005 (15)
N50.072 (3)0.082 (3)0.049 (3)0.001 (3)0.022 (2)0.006 (2)
C10.061 (4)0.078 (4)0.057 (3)0.007 (3)0.011 (3)0.020 (3)
C20.063 (3)0.040 (2)0.033 (2)0.002 (2)0.007 (2)0.0015 (19)
C30.085 (4)0.037 (2)0.029 (2)0.006 (2)0.013 (2)0.0002 (19)
C40.054 (3)0.041 (2)0.029 (2)0.003 (2)0.0103 (19)0.0025 (19)
C50.078 (4)0.046 (3)0.030 (2)0.011 (3)0.013 (2)0.004 (2)
C60.085 (4)0.112 (5)0.066 (4)0.001 (4)0.012 (3)0.008 (3)
C70.116 (6)0.184 (8)0.138 (7)0.028 (6)0.037 (5)0.012 (7)
N60.208 (12)0.212 (11)0.217 (14)0.002 (10)0.033 (10)0.002 (9)
C80.202 (12)0.209 (12)0.213 (14)0.002 (9)0.030 (9)0.003 (9)
C90.197 (14)0.205 (12)0.211 (15)0.003 (10)0.036 (10)0.002 (9)
Geometric parameters (Å, º) top
Cl1—O31.356 (5)N1—C11.277 (8)
Cl1—O21.385 (5)N1—N21.382 (5)
Cl1—O11.411 (5)N2—C21.298 (6)
Cl1—O41.422 (5)N3—C41.286 (6)
Cl1'—O1'1.371 (5)N3—N41.380 (5)
Cl1'—O2'1.385 (5)N4—C51.288 (6)
Cl1'—O4'1.413 (5)N4—Cu1iv2.021 (4)
Cl1'—O3'1.422 (5)N5—C61.119 (8)
Cu1—N4i2.021 (4)C1—H10.9300
Cu1—N4ii2.021 (4)C3—H3A0.9700
Cu1—N1iii2.050 (4)C3—H3B0.9700
Cu1—N12.050 (4)C5—H50.9300
Cu1—N5iii2.393 (5)C6—C71.515 (11)
Cu1—N52.393 (5)C7—H7A0.9600
S1—C11.700 (6)C7—H7B0.9600
S1—C21.720 (6)C7—H7C0.9600
S2—C21.744 (5)N6—C81.114 (6)
S2—C31.789 (6)C8—C91.523 (8)
S3—C41.752 (4)C9—H9A0.9600
S3—C31.809 (5)C9—H9B0.9600
S4—C51.699 (5)C9—H9C0.9600
S4—C41.734 (5)
O3—Cl1—O2120.3N2—N1—Cu1119.4 (3)
O3—Cl1—O1112.3C2—N2—N1111.1 (4)
O2—Cl1—O1104.3C4—N3—N4111.1 (4)
O3—Cl1—O4107.9C5—N4—N3113.3 (4)
O2—Cl1—O4108.5C5—N4—Cu1iv129.1 (3)
O1—Cl1—O4102.0N3—N4—Cu1iv117.5 (3)
O1'—Cl1'—O2'119.3C6—N5—Cu1154.6 (6)
O1'—Cl1'—O4'111.4N1—C1—S1115.2 (4)
O2'—Cl1'—O4'109.9N1—C1—H1122.4
O1'—Cl1'—O3'108.2S1—C1—H1122.4
O2'—Cl1'—O3'106.3N2—C2—S1114.5 (4)
O4'—Cl1'—O3'99.7N2—C2—S2124.6 (4)
N4i—Cu1—N4ii180.0S1—C2—S2121.0 (3)
N4i—Cu1—N1iii91.30 (15)S2—C3—S3114.6 (3)
N4ii—Cu1—N1iii88.70 (15)S2—C3—H3A108.6
N4i—Cu1—N188.70 (15)S3—C3—H3A108.6
N4ii—Cu1—N191.30 (15)S2—C3—H3B108.6
N1iii—Cu1—N1180.0S3—C3—H3B108.6
N4i—Cu1—N5iii89.75 (18)H3A—C3—H3B107.6
N4ii—Cu1—N5iii90.25 (18)N3—C4—S4114.6 (3)
N1iii—Cu1—N5iii92.10 (17)N3—C4—S3123.8 (3)
N1—Cu1—N5iii87.90 (17)S4—C4—S3121.7 (3)
N4i—Cu1—N590.25 (18)N4—C5—S4114.4 (4)
N4ii—Cu1—N589.75 (18)N4—C5—H5122.8
N1iii—Cu1—N587.90 (17)S4—C5—H5122.8
N1—Cu1—N592.10 (17)N5—C6—C7176.0 (10)
N5iii—Cu1—N5180.0C6—C7—H7A109.5
C1—S1—C286.5 (3)C6—C7—H7B109.5
C2—S2—C398.9 (2)H7A—C7—H7B109.5
C4—S3—C399.0 (2)C6—C7—H7C109.5
C5—S4—C486.6 (2)H7A—C7—H7C109.5
C1—N1—N2112.7 (4)H7B—C7—H7C109.5
C1—N1—Cu1127.6 (4)N6—C8—C9180.0
N4i—Cu1—N1—C163.0 (5)C2—S1—C1—N10.1 (5)
N4ii—Cu1—N1—C1117.0 (5)N1—N2—C2—S10.3 (5)
N5iii—Cu1—N1—C126.8 (5)N1—N2—C2—S2179.9 (3)
N5—Cu1—N1—C1153.2 (5)C1—S1—C2—N20.1 (4)
N4i—Cu1—N1—N2109.4 (3)C1—S1—C2—S2179.8 (4)
N4ii—Cu1—N1—N270.6 (3)C3—S2—C2—N26.9 (5)
N5iii—Cu1—N1—N2160.8 (3)C3—S2—C2—S1173.5 (3)
N5—Cu1—N1—N219.2 (3)C2—S2—C3—S371.7 (3)
C1—N1—N2—C20.4 (6)C4—S3—C3—S278.6 (3)
Cu1—N1—N2—C2173.1 (3)N4—N3—C4—S40.2 (5)
C4—N3—N4—C50.6 (6)N4—N3—C4—S3179.3 (4)
C4—N3—N4—Cu1iv177.6 (3)C5—S4—C4—N30.2 (4)
N4i—Cu1—N5—C653.6 (14)C5—S4—C4—S3179.0 (4)
N4ii—Cu1—N5—C6126.4 (14)C3—S3—C4—N36.7 (5)
N1iii—Cu1—N5—C637.7 (14)C3—S3—C4—S4174.2 (3)
N1—Cu1—N5—C6142.3 (14)N3—N4—C5—S40.8 (6)
N2—N1—C1—S10.3 (7)Cu1iv—N4—C5—S4177.3 (3)
Cu1—N1—C1—S1172.5 (3)C4—S4—C5—N40.6 (5)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z1/2; (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3v0.932.352.955 (8)123
C3—H3A···O1vi0.972.413.277 (9)149
C5—H5···O1vii0.932.453.169 (9)135
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+1/2, y+3/2, z+1; (vii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C5H4N4S4)2(C2H3N)2](ClO4)2·C2H3N
Mr1764.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)19.3144 (18), 9.9450 (9), 18.8722 (18)
β (°) 98.876 (1)
V3)3581.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.43 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.608, 0.702
No. of measured, independent and
observed [I > 2σ(I)] reflections
12066, 3285, 2568
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.181, 1.07
No. of reflections3285
No. of parameters216
No. of restraints304
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1007P)2 + 13.6762P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.86, 0.83

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.932.352.955 (8)123
C3—H3A···O1ii0.972.413.277 (9)149
C5—H5···O1iii0.932.453.169 (9)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Luoyang Normal University for supporting this work.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, H.-M., Ju, F.-Y., Wang, J.-G. & Qin, J.-H. (2009). Acta Cryst. E65, m80–m81.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, J.-H., Wang, J.-G. & Hu, P.-Z. (2009). Acta Cryst. E65, m349–m350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. G., Qin, J. H., Hu, P. Z. & Zhao, B. T. (2008). Z. Kristallogr. New Cryst. Struct. 223, 225–227.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds