organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o757-o758

4-Ammonio-2,2,6,6-tetra­methyl­piperidinium bis­­(di­hydrogen phosphate) monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 3 February 2009; accepted 9 March 2009; online 14 March 2009)

In the crystal structure of the title compound, C9H22N22+·2H2PO4·H2O, the H2PO4 anions are hydrogen bonded to each other, forming a ribbon parallel to the b axis. The water mol­ecules connect these ribbons via O—H⋯O hydrogen bonds. The organic cations are attached to the dihydrogen phosphate anions and water mol­ecules through N—H⋯O and C—H⋯O hydrogen bonds, forming an infinite three-dimensional network.

Related literature

For common applications of hybrid compounds, see: Wang et al. (1996[Wang, J. T., Savinell, R. F., Wainright, J., Litt, M. & Yu, H. (1996). Electrochim. Acta, 41, 193-197.]); Coombs et al. (1997[Coombs, N., Khuehniani, D., Oliver, S., Ozin, G. A., Shen, G. C., Sokolov, I. & Yang, H. (1997). J. Chem. Soc. Dalton Trans. pp. 3941-3952.]); Masse et al. (1993[Masse, R., Bagieu-Bleucher, M., Pecaul, J., Levy, J. P. & Zyss, J. (1993). Nonlinear Opt. 5, 413-423.]). For organic phosphates, see: Baoub & Jouini (1998[Baoub, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343-351.]). For a discussion of the O⋯O distances, see: Kefi et al. (2006[Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull. 42, 404-412.]). For P⋯O bond-length data, see: Oueslati & Ben Nasr (2006[Oueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-Ray Struct. Online, 22, 225-226.]). For the [(H2PO4)4]n subnetwork as a polyanion, see: Kefi et al. (2006[Kefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull. 42, 404-412.]).

[Scheme 1]

Experimental

Crystal data
  • C9H22N22+·2H2PO4·H2O

  • Mr = 370.27

  • Monoclinic, P 21 /c

  • a = 12.604 (5) Å

  • b = 8.249 (2) Å

  • c = 16.321 (2) Å

  • β = 104.56 (4)°

  • V = 1642.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.5 × 0.35 × 0.25 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 6617 measured reflections

  • 3953 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.056

  • 2 standard reflections frequency: 120 min intensity decay: 8%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.00

  • 3953 reflections

  • 216 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.74 2.537 (3) 163
O4—H4⋯O5ii 0.82 1.79 2.538 (3) 152
O6—H6⋯O3 0.82 1.83 2.646 (3) 172
O7—H7⋯O1 0.82 1.85 2.662 (3) 173
O9—H91⋯O5 0.85 (1) 1.97 (1) 2.811 (3) 170 (3)
O9—H92⋯O3iii 0.85 (1) 2.00 (1) 2.837 (3) 165 (5)
O9—H92⋯O4iii 0.85 (1) 2.66 (5) 3.256 (3) 128 (5)
N1—H1A⋯O8iv 0.90 1.84 2.742 (3) 176
N1—H1B⋯O5v 0.90 2.31 3.168 (3) 159
N1—H1B⋯O8v 0.90 2.33 3.038 (3) 136
N2—H2A⋯O2 0.89 2.05 2.929 (3) 172
N2—H2A⋯O1 0.89 2.51 3.076 (3) 122
N2—H2B⋯O3ii 0.89 2.07 2.919 (3) 160
N2—H2C⋯O9 0.89 1.88 2.721 (4) 156
C3—H3⋯O6ii 0.98 2.59 3.406 (3) 141
C4—H4B⋯O9vi 0.97 2.58 3.492 (4) 158
C9—H9A⋯O7vi 0.96 2.40 3.343 (3) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The combination of organic molecules and inorganic materials was the starting point for the development of new hybrid compounds having many practical and potential applications in various fields, such as biomolecular sciences, catalysis, fuel cells, liquid crystal-material development and quadratic nonlinear optics (Wang et al., 1996; Coombs et al., 1997; Masse et al., 1993). Among these hybrid compounds, organic phosphates are particularly interesting owing to the specific H-bond schemes that they can present in their infinite networks (Baoub & Jouini, 1998). We report here the synthesis and the crystal structure of a new member of this family, the compound (C9H28N2O9P2). As shown in Fig. 1, to ensure charge equilibrium the organic species is doubly protonated at N1 and N2 nitrogen atoms. Thus, the structure associates to each 4-ammonio-2,2,6,6,-tetramethylpiperidinium cation two dihydrogen phosphate anions and one water molecule. The two H2PO4- are crystallographically independent. They form, via H-bonds a repetitive motif of four member (H2PO4-)4 (Fig. 2). The organic cations and the water molecules are attached to these units via (O—H···O), N—H···O and C—H···O hydrogen bonds to perform a three dimensional infinite network. An examination of the anionic entity shows that the O···O distances involved in hydrogen bonds [2.537 (3) to 2.662 (3) A°] are close to the O···O distances in the H2PO4- tetrahedra [2.469 (3) to 2.536 (3) A°], so one could consider the [(H2PO4-)4]n subnetwork as a polyanion (Kefi et al., 2OO6). The detailed geometries of H2P(1)O4- and H2P(2)O4- entities show that the P···O distances significantly are shorter [1.480 (2) to 1.515 (2) A°] than the P···OH distances [1.552 (2) to 1.582 (2) A°], which is in full agreement with those observed in such anions in other organic dihydrogenomonophosphates [Oueslati and Ben Nasr, 2006].

Related literature top

For common applications of hybrid compounds, see: Wang et al. (1996); Coombs et al. (1997); Masse et al. (1993). For organic phosphates, see: Baoub & Jouini (1998). For a discussion of the O···O distances, see: Kefi et al. (2006). For P···O bond-length data, see: Oueslati & Ben Nasr (2006). For the [(H2PO4-)4]n subnetwork as a polyanion, see: Kefi et al. (2006).

Experimental top

Crystals of the title compound have been prepared in a Petri dish by adding 50 mmol of concentrated orthophosphoric acid (Fluka, 85%, d = 1.7) to 25 mmol of 4-Amino-2,2,6,6-tetramethylpiperidine (Acros) dissolved in ethanol. After agitation, the resulting solution has been slowly evaporated at room temperature until the formation of single crystals suitable for X-ray structure analysis and these remained stable under normal conditions of temperature and humidity.

Refinement top

Hydrogen atoms were placed in calculated positions and refined as part of a riding model except those of the water molecule which were located in difference Fourier maps and their positions and isotropic displacement parameters refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (C9H28N2O9P2), showing 40% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. Projection of (C9H28N2O9P2) subnetwork along the b axis.
4-Ammonio-2,2,6,6-tetramethylpiperidinium bis(dihydrogen phosphate) monohydrate top
Crystal data top
C9H22N22+·2H2PO4·H2OF(000) = 792
Mr = 370.27Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.604 (5) Åθ = 9–11°
b = 8.249 (2) ŵ = 0.31 mm1
c = 16.321 (2) ÅT = 298 K
β = 104.56 (4)°Prism, colorless
V = 1642.4 (8) Å30.5 × 0.35 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.6°
Graphite monochromatorh = 1616
Nonprofiled ω scansk = 010
6617 measured reflectionsl = 1021
3953 independent reflections2 standard reflections every 120 min
2575 reflections with I > 2σ(I) intensity decay: 8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
3953 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.49 e Å3
Crystal data top
C9H22N22+·2H2PO4·H2OV = 1642.4 (8) Å3
Mr = 370.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.604 (5) ŵ = 0.31 mm1
b = 8.249 (2) ÅT = 298 K
c = 16.321 (2) Å0.5 × 0.35 × 0.25 mm
β = 104.56 (4)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.056
6617 measured reflections2 standard reflections every 120 min
3953 independent reflections intensity decay: 8%
2575 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
3953 reflectionsΔρmin = 0.49 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.52437 (5)0.19580 (8)0.19702 (4)0.02151 (17)
P20.79116 (5)0.36565 (8)0.37537 (4)0.02164 (17)
O10.57523 (14)0.0956 (2)0.27473 (12)0.0301 (4)
O20.42447 (15)0.2885 (2)0.21633 (14)0.0332 (5)
H20.43790.38590.22030.050*
O30.60240 (14)0.3112 (2)0.17133 (12)0.0279 (4)
O40.47608 (15)0.0832 (3)0.12059 (12)0.0372 (5)
H40.41550.05090.12330.056*
O50.70615 (14)0.4348 (2)0.41668 (12)0.0312 (5)
O60.77241 (16)0.4361 (3)0.28269 (12)0.0356 (5)
H60.71720.39540.25200.053*
O70.77502 (16)0.1773 (2)0.36442 (15)0.0380 (5)
H70.71130.15770.33940.057*
O80.90532 (14)0.3991 (3)0.42314 (13)0.0358 (5)
O90.59416 (18)0.2150 (3)0.49650 (14)0.0393 (5)
H910.626 (3)0.290 (3)0.476 (2)0.055 (11)*
H920.597 (4)0.226 (6)0.5489 (11)0.13 (2)*
N10.12655 (16)0.3672 (3)0.44120 (13)0.0195 (4)
H1A0.05350.37630.43290.023*
H1B0.15730.43600.48330.023*
N20.40484 (17)0.1521 (3)0.37758 (15)0.0301 (5)
H2A0.41830.19310.33070.045*
H2B0.40930.04450.37640.045*
H2C0.45400.19000.42260.045*
C10.15485 (19)0.4285 (3)0.36124 (16)0.0228 (5)
C20.2733 (2)0.3797 (3)0.36452 (18)0.0268 (6)
H22A0.28920.40530.31080.032*
H22B0.32310.44180.40830.032*
C30.29204 (19)0.2008 (3)0.38261 (17)0.0241 (5)
H30.23830.13950.34000.029*
C40.27523 (19)0.1613 (3)0.46967 (17)0.0233 (5)
H4A0.32530.22560.51210.028*
H4B0.29190.04780.48230.028*
C50.15786 (19)0.1958 (3)0.47367 (17)0.0221 (5)
C60.0747 (2)0.3618 (4)0.28233 (18)0.0404 (8)
H6A0.08660.24750.27810.061*
H6B0.08620.41550.23310.061*
H6C0.00100.38040.28620.061*
C70.1434 (2)0.6124 (3)0.36298 (19)0.0345 (7)
H7A0.07000.64010.36460.052*
H7B0.15890.65800.31310.052*
H7C0.19410.65500.41230.052*
C80.0775 (2)0.0728 (4)0.4223 (2)0.0339 (7)
H8A0.08750.06650.36600.051*
H8B0.00380.10620.41980.051*
H8C0.09080.03170.44880.051*
C90.1488 (2)0.1962 (3)0.56518 (17)0.0291 (6)
H9A0.16070.08850.58790.044*
H9B0.07710.23250.56700.044*
H9C0.20300.26790.59820.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0200 (3)0.0239 (3)0.0216 (3)0.0024 (3)0.0070 (3)0.0030 (3)
P20.0183 (3)0.0229 (3)0.0226 (4)0.0007 (3)0.0032 (2)0.0014 (3)
O10.0333 (10)0.0257 (10)0.0286 (11)0.0049 (8)0.0030 (8)0.0036 (8)
O20.0323 (10)0.0254 (10)0.0473 (13)0.0010 (8)0.0203 (9)0.0007 (10)
O30.0245 (9)0.0328 (10)0.0272 (10)0.0066 (8)0.0077 (8)0.0008 (9)
O40.0286 (10)0.0517 (13)0.0333 (12)0.0120 (9)0.0115 (9)0.0202 (10)
O50.0281 (9)0.0362 (11)0.0317 (11)0.0093 (8)0.0121 (8)0.0049 (9)
O60.0392 (11)0.0427 (12)0.0228 (11)0.0127 (9)0.0037 (8)0.0015 (9)
O70.0322 (10)0.0249 (10)0.0506 (14)0.0027 (8)0.0014 (10)0.0035 (10)
O80.0209 (9)0.0438 (12)0.0382 (12)0.0010 (8)0.0009 (8)0.0108 (10)
O90.0422 (12)0.0495 (14)0.0278 (12)0.0122 (10)0.0117 (10)0.0011 (11)
N10.0193 (9)0.0214 (10)0.0183 (11)0.0005 (8)0.0059 (8)0.0003 (9)
N20.0263 (11)0.0339 (13)0.0335 (13)0.0045 (9)0.0136 (10)0.0046 (11)
C10.0231 (12)0.0300 (13)0.0154 (12)0.0004 (11)0.0051 (10)0.0048 (11)
C20.0252 (12)0.0308 (14)0.0275 (15)0.0008 (11)0.0122 (11)0.0038 (12)
C30.0194 (11)0.0283 (13)0.0268 (14)0.0006 (10)0.0100 (10)0.0038 (12)
C40.0227 (11)0.0209 (13)0.0263 (14)0.0032 (10)0.0064 (10)0.0010 (11)
C50.0226 (11)0.0194 (11)0.0255 (14)0.0010 (10)0.0082 (10)0.0001 (11)
C60.0330 (15)0.061 (2)0.0229 (15)0.0037 (14)0.0001 (12)0.0019 (15)
C70.0391 (15)0.0298 (15)0.0374 (17)0.0078 (12)0.0148 (13)0.0118 (13)
C80.0284 (13)0.0279 (14)0.0482 (19)0.0110 (11)0.0146 (13)0.0081 (14)
C90.0350 (14)0.0278 (14)0.0280 (15)0.0019 (11)0.0143 (12)0.0071 (12)
Geometric parameters (Å, º) top
P1—O31.5020 (19)C1—C21.534 (3)
P1—O11.515 (2)C2—C31.512 (4)
P1—O41.552 (2)C2—H22A0.9700
P1—O21.5713 (19)C2—H22B0.9700
P2—O81.480 (2)C3—C41.524 (4)
P2—O51.5137 (19)C3—H30.9800
P2—O71.572 (2)C4—C51.524 (3)
P2—O61.582 (2)C4—H4A0.9700
O2—H20.8200C4—H4B0.9700
O4—H40.8200C5—C91.526 (4)
O6—H60.8200C5—C81.527 (4)
O7—H70.8200C6—H6A0.9600
O9—H910.848 (10)C6—H6B0.9600
O9—H920.852 (10)C6—H6C0.9600
N1—C11.523 (3)C7—H7A0.9600
N1—C51.527 (3)C7—H7B0.9600
N1—H1A0.9000C7—H7C0.9600
N1—H1B0.9000C8—H8A0.9600
N2—C31.499 (3)C8—H8B0.9600
N2—H2A0.8900C8—H8C0.9600
N2—H2B0.8900C9—H9A0.9600
N2—H2C0.8900C9—H9B0.9600
C1—C71.525 (4)C9—H9C0.9600
C1—C61.526 (4)
O3—P1—O1114.23 (11)N2—C3—C4110.5 (2)
O3—P1—O4107.88 (11)C2—C3—C4109.8 (2)
O1—P1—O4110.16 (13)N2—C3—H3108.6
O3—P1—O2111.20 (12)C2—C3—H3108.6
O1—P1—O2106.82 (12)C4—C3—H3108.6
O4—P1—O2106.28 (12)C3—C4—C5111.4 (2)
O8—P2—O5113.48 (12)C3—C4—H4A109.4
O8—P2—O7108.97 (11)C5—C4—H4A109.4
O5—P2—O7109.72 (12)C3—C4—H4B109.4
O8—P2—O6109.09 (13)C5—C4—H4B109.4
O5—P2—O6109.58 (12)H4A—C4—H4B108.0
O7—P2—O6105.71 (12)C4—C5—C9110.8 (2)
P1—O2—H2109.5C4—C5—N1109.09 (19)
P1—O4—H4109.5C9—C5—N1105.1 (2)
P2—O6—H6109.5C4—C5—C8111.7 (2)
P2—O7—H7109.5C9—C5—C8109.7 (2)
H91—O9—H92114 (3)N1—C5—C8110.3 (2)
C1—N1—C5120.63 (19)C1—C6—H6A109.5
C1—N1—H1A107.2C1—C6—H6B109.5
C5—N1—H1A107.2H6A—C6—H6B109.5
C1—N1—H1B107.2C1—C6—H6C109.5
C5—N1—H1B107.2H6A—C6—H6C109.5
H1A—N1—H1B106.8H6B—C6—H6C109.5
C3—N2—H2A109.5C1—C7—H7A109.5
C3—N2—H2B109.5C1—C7—H7B109.5
H2A—N2—H2B109.5H7A—C7—H7B109.5
C3—N2—H2C109.5C1—C7—H7C109.5
H2A—N2—H2C109.5H7A—C7—H7C109.5
H2B—N2—H2C109.5H7B—C7—H7C109.5
N1—C1—C7105.7 (2)C5—C8—H8A109.5
N1—C1—C6110.8 (2)C5—C8—H8B109.5
C7—C1—C6109.2 (2)H8A—C8—H8B109.5
N1—C1—C2108.6 (2)C5—C8—H8C109.5
C7—C1—C2110.9 (2)H8A—C8—H8C109.5
C6—C1—C2111.5 (2)H8B—C8—H8C109.5
C3—C2—C1111.4 (2)C5—C9—H9A109.5
C3—C2—H22A109.3C5—C9—H9B109.5
C1—C2—H22A109.3H9A—C9—H9B109.5
C3—C2—H22B109.3C5—C9—H9C109.5
C1—C2—H22B109.3H9A—C9—H9C109.5
H22A—C2—H22B108.0H9B—C9—H9C109.5
N2—C3—C2110.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.742.537 (3)163
O4—H4···O5ii0.821.792.538 (3)152
O6—H6···O30.821.832.646 (3)172
O7—H7···O10.821.852.662 (3)173
O9—H91···O50.85 (1)1.97 (1)2.811 (3)170 (3)
O9—H92···O3iii0.85 (1)2.00 (1)2.837 (3)165 (5)
O9—H92···O4iii0.85 (1)2.66 (5)3.256 (3)128 (5)
N1—H1A···O8iv0.901.842.742 (3)176
N1—H1B···O5v0.902.313.168 (3)159
N1—H1B···O8v0.902.333.038 (3)136
N2—H2A···O20.892.052.929 (3)172
N2—H2A···O10.892.513.076 (3)122
N2—H2B···O3ii0.892.072.919 (3)160
N2—H2C···O90.891.882.721 (4)156
C3—H3···O6ii0.982.593.406 (3)141
C4—H4B···O9vi0.972.583.492 (4)158
C9—H9A···O7vi0.962.403.343 (3)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H22N22+·2H2PO4·H2O
Mr370.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.604 (5), 8.249 (2), 16.321 (2)
β (°) 104.56 (4)
V3)1642.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.5 × 0.35 × 0.25
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6617, 3953, 2575
Rint0.056
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.00
No. of reflections3953
No. of parameters216
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.49

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.742.537 (3)163.1
O4—H4···O5ii0.821.792.538 (3)151.6
O6—H6···O30.821.832.646 (3)172.1
O7—H7···O10.821.852.662 (3)172.6
O9—H91···O50.85 (1)1.97 (1)2.811 (3)170 (3)
O9—H92···O3iii0.85 (1)2.00 (1)2.837 (3)165 (5)
O9—H92···O4iii0.85 (1)2.66 (5)3.256 (3)128 (5)
N1—H1A···O8iv0.901.842.742 (3)176.4
N1—H1B···O5v0.902.313.168 (3)158.5
N1—H1B···O8v0.902.333.038 (3)135.8
N2—H2A···O20.892.052.929 (3)171.5
N2—H2A···O10.892.513.076 (3)121.9
N2—H2B···O3ii0.892.072.919 (3)159.7
N2—H2C···O90.891.882.721 (4)155.9
C3—H3···O6ii0.982.593.406 (3)140.8
C4—H4B···O9vi0.972.583.492 (4)157.6
C9—H9A···O7vi0.962.403.343 (3)168.2
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

We acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationBaoub, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343–351.  Google Scholar
First citationCoombs, N., Khuehniani, D., Oliver, S., Ozin, G. A., Shen, G. C., Sokolov, I. & Yang, H. (1997). J. Chem. Soc. Dalton Trans. pp. 3941–3952.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKefi, R., Abid, S., Ben Nasr, C. & Rzaigui, M. (2006). Mater. Res. Bull. 42, 404–412.  Web of Science CSD CrossRef Google Scholar
First citationMasse, R., Bagieu-Bleucher, M., Pecaul, J., Levy, J. P. & Zyss, J. (1993). Nonlinear Opt. 5, 413–423.  CAS Google Scholar
First citationOueslati, A. & Ben Nasr, C. (2006). Anal. Sci. X-Ray Struct. Online, 22, 225–226.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. T., Savinell, R. F., Wainright, J., Litt, M. & Yu, H. (1996). Electrochim. Acta, 41, 193–197.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o757-o758
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds