organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-Benz­yl­oxy-3-hydr­­oxy-3,3′-bi-1H-indole-2,2′(3H,3′H)-dione monohydrate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 28 February 2009; accepted 2 April 2009; online 8 April 2009)

In the title compound, C23H18N2O4·H2O, the two oxindole rings subtend a dihedral angle of 54.29 (5)°. The crystal structure is stabilized by intermolecular N—H⋯O, O—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activity and pharmaceutical applications of indole derivatives, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]). For description of hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18N2O4·H2O

  • Mr = 404.41

  • Triclinic, [P \overline 1]

  • a = 9.8243 (3) Å

  • b = 9.9304 (6) Å

  • c = 11.4460 (5) Å

  • α = 107.517 (2)°

  • β = 114.227 (3)°

  • γ = 93.918 (2)°

  • V = 947.17 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.980

  • 16894 measured reflections

  • 3335 independent reflections

  • 3045 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.05

  • 3335 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.860 (18) 2.045 (18) 2.8858 (17) 165.6 (15)
O2—H2⋯O3ii 0.91 (2) 1.99 (2) 2.8463 (13) 155.9 (18)
O2—H2⋯O2ii 0.91 (2) 2.57 (2) 3.0274 (18) 111.9 (14)
O5—H5B⋯O3iii 0.96 (3) 1.97 (3) 2.8969 (17) 161 (3)
N12—H12⋯O1iv 0.877 (16) 2.044 (16) 2.8329 (14) 149.2 (14)
C17—H17⋯Cg3 0.93 3.15 3.8226 (17) 130
C16—H16⋯Cg5v 0.93 2.75 3.5140 (19) 140
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z+1; (v) -x, -y, -z. Cg3 is the centroid of the C2–C7 ring and Cg5 is the centroid of the C20–C25 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The oxindole rings enclose a dihedral angle of 54.29 (5)°. In the benzene ring of the indole ring system, the endocyclic angels at C3 and C14 are contracted to 117.24 (25)° and 116.90 (14)°, while those at C2 and C13 are expanded to 122.20 (14)° and 122.69 (13)°, respectively. This would appear to be a real effect caused by the fusion of the pyrrole with benzene ring resulting in an angular distortion. The sum of the bond angles around the hetero nitrogen atom in the oxindole ring systems are equal to N1 [359.76 (11)°] and N12 [359.93 (10)°], is in accordance with the sp2 hybridization.

The packing of the molecules in the crystal structure is stabilized through N-H···O, O-H···O and C-H···π interactions. Atom N12 (x, y, z) donates a proton to O1 (-x+1, -y+1, -z+1) and forms a dimer with graph-set motif of R22(14) (Bernstein et al., 1995). The intermolecular N1-H1···O5 and O5-H5B···O3 hydrogen bonds form a one dimensional chain running along a-axis. The indole ring interacts with the other indole moiety through a weak intra C-H···π interaction involving atom C17, the separation between H17 and the centroid of the C2/C3/C4/C5/C6/C7 (Cg3) ring being 3.15Å.

Related literature top

For related literature, see: Harris & Uhle (1960); Ho et al. (1986); Rajeswaran et al. (1999); Stevenson et al. (2000). For description of hydrogen bonds, see Bernstein et al. (1995). Cg3 ids the centroid of the C2–C7 ring and Cg5 is the centroid of the C20–C25 ring.

Experimental top

To a refluxing solution of isatin (1 equivalent), Rh2(OAC)4 (0.01 equivalent) in dichloromethane, benzyl alcohol (1.2 equivalent) was added. After five minutes, 3-diazo-1,3-dihydro-indol-2-one in dichloromethane was added dropwise through a syringe pump. The reaction mixture was allowed to stir at 60°C for half-an-hour. The solid formed in the reaction was filtered and washed with methanol to obtain the pure product. The compound was recrystallized in ethanol.

Refinement top

H atoms bonded to nitrogen and oxygen H atoms were freely refined. H atoms bonded to carbon were positioned geometrically (C—H=0.93–0.97 Å) and allowed to ride on their parent atoms with 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
3'-Benzyloxy-3-hydroxy-3,3'-bi-1H-indole-2,2'(3H,3'H)-dione monohydrate top
Crystal data top
C23H18N2O4·H2OZ = 2
Mr = 404.41F(000) = 424
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8243 (3) ÅCell parameters from 4635 reflections
b = 9.9304 (6) Åθ = 2.1–25.0°
c = 11.4460 (5) ŵ = 0.10 mm1
α = 107.517 (2)°T = 293 K
β = 114.227 (3)°Block, colourless
γ = 93.918 (2)°0.28 × 0.25 × 0.20 mm
V = 947.17 (8) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3335 independent reflections
Radiation source: fine-focus sealed tube3045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.972, Tmax = 0.980k = 1111
16894 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.038P)2 + 0.3004P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3335 reflectionsΔρmax = 0.23 e Å3
292 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (3)
Crystal data top
C23H18N2O4·H2Oγ = 93.918 (2)°
Mr = 404.41V = 947.17 (8) Å3
Triclinic, P1Z = 2
a = 9.8243 (3) ÅMo Kα radiation
b = 9.9304 (6) ŵ = 0.10 mm1
c = 11.4460 (5) ÅT = 293 K
α = 107.517 (2)°0.28 × 0.25 × 0.20 mm
β = 114.227 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3335 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3045 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.021
16894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
3335 reflectionsΔρmin = 0.18 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33868 (11)0.37105 (9)0.58225 (10)0.0399 (2)
O20.38716 (10)0.07924 (10)0.53420 (9)0.0335 (2)
H20.381 (2)0.018 (2)0.504 (2)0.070 (6)*
O30.61939 (10)0.21310 (10)0.48237 (10)0.0374 (2)
O40.33920 (10)0.00510 (8)0.25071 (9)0.0302 (2)
O50.09912 (16)0.40448 (16)0.55511 (16)0.0632 (3)
H5B0.183 (4)0.346 (3)0.552 (3)0.129 (10)*
H5A0.064 (4)0.482 (4)0.622 (3)0.135 (12)*
N10.09503 (13)0.23295 (12)0.47470 (12)0.0349 (3)
H10.0522 (19)0.2945 (18)0.5098 (17)0.048 (4)*
C20.02036 (14)0.08934 (14)0.38791 (13)0.0320 (3)
C30.12940 (15)0.02332 (17)0.34058 (15)0.0435 (3)
H30.19610.07350.36470.052*
C40.17671 (17)0.12064 (19)0.25573 (16)0.0520 (4)
H40.27770.16810.22110.062*
C50.07767 (19)0.19539 (17)0.22128 (17)0.0521 (4)
H50.11290.29210.16320.062*
C60.07409 (17)0.12838 (15)0.27202 (14)0.0407 (3)
H60.14160.17940.25020.049*
C70.12222 (14)0.01554 (13)0.35540 (12)0.0288 (3)
C80.27766 (13)0.11694 (12)0.43061 (12)0.0262 (3)
C90.24378 (14)0.25831 (13)0.50590 (12)0.0286 (3)
C100.33824 (13)0.14368 (12)0.33172 (12)0.0255 (3)
C110.50226 (13)0.24303 (12)0.41187 (12)0.0273 (3)
N120.49318 (12)0.36457 (11)0.38326 (11)0.0305 (2)
H120.5721 (18)0.4358 (17)0.4159 (16)0.042 (4)*
C130.34446 (14)0.36220 (13)0.29098 (12)0.0289 (3)
C140.29438 (16)0.46934 (14)0.24218 (14)0.0382 (3)
H140.36020.55700.27010.046*
C150.14143 (18)0.44063 (16)0.14958 (15)0.0448 (4)
H150.10360.51080.11470.054*
C160.04399 (16)0.31071 (17)0.10790 (15)0.0443 (4)
H160.05800.29400.04470.053*
C170.09647 (15)0.20413 (15)0.15937 (13)0.0359 (3)
H170.03070.11640.13140.043*
C180.24816 (14)0.23153 (13)0.25278 (12)0.0277 (3)
C190.40617 (18)0.00789 (15)0.16166 (15)0.0418 (3)
H19A0.51600.04410.21510.050*
H19B0.36490.07190.11310.050*
C200.37193 (14)0.14144 (13)0.06125 (13)0.0315 (3)
C210.39451 (15)0.25784 (15)0.10387 (14)0.0370 (3)
H210.42910.24400.19630.044*
C220.36598 (19)0.39435 (16)0.00986 (17)0.0492 (4)
H220.38020.47250.03900.059*
C230.3165 (2)0.41584 (17)0.12678 (18)0.0573 (4)
H230.29850.50800.18970.069*
C240.2940 (2)0.30139 (19)0.16987 (16)0.0566 (4)
H240.26070.31570.26230.068*
C250.32036 (17)0.16459 (17)0.07653 (15)0.0440 (3)
H250.30330.08740.10670.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0466 (6)0.0270 (5)0.0427 (5)0.0014 (4)0.0243 (5)0.0037 (4)
O20.0331 (5)0.0333 (5)0.0335 (5)0.0095 (4)0.0121 (4)0.0154 (4)
O30.0245 (5)0.0340 (5)0.0483 (6)0.0061 (4)0.0110 (4)0.0158 (4)
O40.0346 (5)0.0230 (4)0.0360 (5)0.0038 (3)0.0224 (4)0.0061 (4)
O50.0581 (8)0.0594 (8)0.0800 (9)0.0163 (6)0.0439 (7)0.0168 (7)
N10.0346 (6)0.0360 (6)0.0414 (6)0.0138 (5)0.0235 (5)0.0135 (5)
C20.0298 (6)0.0400 (7)0.0316 (6)0.0074 (5)0.0149 (5)0.0187 (6)
C30.0279 (7)0.0621 (9)0.0482 (8)0.0095 (6)0.0179 (6)0.0292 (7)
C40.0302 (7)0.0672 (11)0.0510 (9)0.0090 (7)0.0111 (7)0.0258 (8)
C50.0502 (9)0.0427 (8)0.0482 (9)0.0148 (7)0.0180 (7)0.0082 (7)
C60.0428 (8)0.0333 (7)0.0433 (8)0.0011 (6)0.0219 (7)0.0089 (6)
C70.0282 (6)0.0306 (6)0.0293 (6)0.0026 (5)0.0139 (5)0.0125 (5)
C80.0256 (6)0.0250 (6)0.0283 (6)0.0057 (5)0.0123 (5)0.0096 (5)
C90.0332 (7)0.0277 (6)0.0296 (6)0.0076 (5)0.0174 (5)0.0117 (5)
C100.0247 (6)0.0217 (6)0.0288 (6)0.0041 (4)0.0132 (5)0.0064 (5)
C110.0257 (6)0.0253 (6)0.0304 (6)0.0055 (5)0.0145 (5)0.0070 (5)
N120.0265 (5)0.0251 (5)0.0359 (6)0.0003 (4)0.0123 (5)0.0096 (4)
C130.0311 (6)0.0290 (6)0.0279 (6)0.0066 (5)0.0152 (5)0.0095 (5)
C140.0458 (8)0.0319 (7)0.0389 (7)0.0085 (6)0.0185 (6)0.0164 (6)
C150.0505 (9)0.0480 (8)0.0432 (8)0.0204 (7)0.0189 (7)0.0272 (7)
C160.0328 (7)0.0612 (9)0.0389 (8)0.0134 (7)0.0110 (6)0.0247 (7)
C170.0290 (7)0.0431 (7)0.0334 (7)0.0037 (6)0.0119 (5)0.0151 (6)
C180.0289 (6)0.0293 (6)0.0269 (6)0.0061 (5)0.0152 (5)0.0092 (5)
C190.0520 (8)0.0333 (7)0.0501 (8)0.0037 (6)0.0375 (7)0.0089 (6)
C200.0287 (6)0.0326 (7)0.0353 (7)0.0053 (5)0.0194 (5)0.0084 (5)
C210.0376 (7)0.0400 (7)0.0350 (7)0.0105 (6)0.0179 (6)0.0129 (6)
C220.0611 (10)0.0361 (8)0.0614 (10)0.0175 (7)0.0380 (8)0.0161 (7)
C230.0735 (11)0.0402 (8)0.0540 (10)0.0033 (8)0.0412 (9)0.0039 (7)
C240.0673 (11)0.0638 (11)0.0328 (8)0.0027 (8)0.0273 (8)0.0056 (7)
C250.0499 (9)0.0494 (8)0.0409 (8)0.0117 (7)0.0253 (7)0.0201 (7)
Geometric parameters (Å, º) top
O1—C91.2191 (15)N12—C131.4016 (16)
O2—C81.4066 (14)N12—H120.877 (16)
O2—H20.91 (2)C13—C141.3747 (18)
O3—C111.2218 (15)C13—C181.3861 (17)
O4—C101.4123 (14)C14—C151.384 (2)
O4—C191.4273 (15)C14—H140.9300
O5—H5B0.96 (3)C15—C161.376 (2)
O5—H5A0.83 (3)C15—H150.9300
N1—C91.3392 (17)C16—C171.391 (2)
N1—C21.4017 (17)C16—H160.9300
N1—H10.860 (18)C17—C181.3783 (18)
C2—C31.3742 (19)C17—H170.9300
C2—C71.3851 (18)C19—C201.4906 (18)
C3—C41.381 (2)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.375 (2)C20—C251.3808 (19)
C4—H40.9300C20—C211.3816 (19)
C5—C61.387 (2)C21—C221.377 (2)
C5—H50.9300C21—H210.9300
C6—C71.3759 (18)C22—C231.374 (2)
C6—H60.9300C22—H220.9300
C7—C81.5086 (16)C23—C241.366 (3)
C8—C91.5477 (16)C23—H230.9300
C8—C101.5551 (16)C24—C251.380 (2)
C10—C181.5114 (17)C24—H240.9300
C10—C111.5608 (16)C25—H250.9300
C11—N121.3418 (16)
C8—O2—H2110.3 (12)C13—N12—H12123.8 (10)
C10—O4—C19113.84 (9)C14—C13—C18122.68 (12)
H5B—O5—H5A112 (3)C14—C13—N12127.59 (12)
C9—N1—C2111.86 (11)C18—C13—N12109.73 (11)
C9—N1—H1124.2 (11)C13—C14—C15116.90 (13)
C2—N1—H1123.7 (11)C13—C14—H14121.5
C3—C2—C7122.20 (13)C15—C14—H14121.5
C3—C2—N1127.96 (13)C16—C15—C14121.59 (13)
C7—C2—N1109.82 (11)C16—C15—H15119.2
C2—C3—C4117.24 (14)C14—C15—H15119.2
C2—C3—H3121.4C15—C16—C17120.67 (13)
C4—C3—H3121.4C15—C16—H16119.7
C5—C4—C3121.41 (13)C17—C16—H16119.7
C5—C4—H4119.3C18—C17—C16118.49 (12)
C3—C4—H4119.3C18—C17—H17120.8
C4—C5—C6120.82 (14)C16—C17—H17120.8
C4—C5—H5119.6C17—C18—C13119.65 (12)
C6—C5—H5119.6C17—C18—C10131.70 (11)
C7—C6—C5118.33 (14)C13—C18—C10108.63 (10)
C7—C6—H6120.8O4—C19—C20109.22 (10)
C5—C6—H6120.8O4—C19—H19A109.8
C6—C7—C2119.98 (12)C20—C19—H19A109.8
C6—C7—C8131.53 (12)O4—C19—H19B109.8
C2—C7—C8108.41 (10)C20—C19—H19B109.8
O2—C8—C7114.09 (10)H19A—C19—H19B108.3
O2—C8—C9105.88 (9)C25—C20—C21118.92 (12)
C7—C8—C9101.76 (9)C25—C20—C19119.93 (13)
O2—C8—C10111.95 (9)C21—C20—C19121.13 (12)
C7—C8—C10112.73 (9)C22—C21—C20120.20 (13)
C9—C8—C10109.61 (9)C22—C21—H21119.9
O1—C9—N1126.95 (12)C20—C21—H21119.9
O1—C9—C8124.94 (11)C23—C22—C21120.39 (15)
N1—C9—C8108.10 (10)C23—C22—H22119.8
O4—C10—C18115.50 (9)C21—C22—H22119.8
O4—C10—C8105.35 (9)C24—C23—C22119.82 (14)
C18—C10—C8112.18 (9)C24—C23—H23120.1
O4—C10—C11110.65 (9)C22—C23—H23120.1
C18—C10—C11101.56 (9)C23—C24—C25120.11 (14)
C8—C10—C11111.77 (9)C23—C24—H24119.9
O3—C11—N12125.87 (11)C25—C24—H24119.9
O3—C11—C10126.42 (11)C24—C25—C20120.55 (14)
N12—C11—C10107.61 (10)C24—C25—H25119.7
C11—N12—C13112.33 (10)C20—C25—H25119.7
C11—N12—H12123.8 (10)
C9—N1—C2—C3176.59 (13)O4—C10—C11—O350.44 (16)
C9—N1—C2—C72.02 (15)C18—C10—C11—O3173.59 (12)
C7—C2—C3—C41.4 (2)C8—C10—C11—O366.64 (15)
N1—C2—C3—C4179.82 (13)O4—C10—C11—N12126.13 (10)
C2—C3—C4—C50.7 (2)C18—C10—C11—N122.99 (12)
C3—C4—C5—C60.6 (2)C8—C10—C11—N12116.79 (11)
C4—C5—C6—C71.3 (2)O3—C11—N12—C13175.33 (12)
C5—C6—C7—C20.7 (2)C10—C11—N12—C131.27 (13)
C5—C6—C7—C8177.20 (13)C11—N12—C13—C14178.62 (12)
C3—C2—C7—C60.65 (19)C11—N12—C13—C181.22 (14)
N1—C2—C7—C6179.35 (11)C18—C13—C14—C151.10 (19)
C3—C2—C7—C8176.58 (11)N12—C13—C14—C15179.07 (12)
N1—C2—C7—C82.12 (14)C13—C14—C15—C160.2 (2)
C6—C7—C8—O264.69 (17)C14—C15—C16—C170.8 (2)
C2—C7—C8—O2112.10 (11)C15—C16—C17—C180.1 (2)
C6—C7—C8—C9178.23 (13)C16—C17—C18—C131.14 (19)
C2—C7—C8—C91.44 (12)C16—C17—C18—C10176.85 (12)
C6—C7—C8—C1064.46 (17)C14—C13—C18—C171.79 (19)
C2—C7—C8—C10118.75 (11)N12—C13—C18—C17178.35 (11)
C2—N1—C9—O1177.54 (12)C14—C13—C18—C10176.62 (11)
C2—N1—C9—C81.01 (14)N12—C13—C18—C103.23 (13)
O2—C8—C9—O159.33 (15)O4—C10—C18—C1758.38 (17)
C7—C8—C9—O1178.85 (11)C8—C10—C18—C1762.37 (16)
C10—C8—C9—O161.60 (15)C11—C10—C18—C17178.15 (13)
O2—C8—C9—N1119.26 (10)O4—C10—C18—C13123.47 (11)
C7—C8—C9—N10.27 (12)C8—C10—C18—C13115.79 (11)
C10—C8—C9—N1119.82 (11)C11—C10—C18—C133.70 (12)
C19—O4—C10—C1861.51 (14)C10—O4—C19—C20168.10 (10)
C19—O4—C10—C8174.11 (10)O4—C19—C20—C25133.58 (13)
C19—O4—C10—C1153.14 (13)O4—C19—C20—C2148.07 (17)
O2—C8—C10—O473.14 (11)C25—C20—C21—C220.1 (2)
C7—C8—C10—O457.10 (12)C19—C20—C21—C22178.29 (13)
C9—C8—C10—O4169.68 (9)C20—C21—C22—C230.7 (2)
O2—C8—C10—C18160.41 (9)C21—C22—C23—C240.7 (3)
C7—C8—C10—C1869.34 (12)C22—C23—C24—C250.1 (3)
C9—C8—C10—C1843.23 (13)C23—C24—C25—C201.0 (3)
O2—C8—C10—C1147.09 (13)C21—C20—C25—C240.9 (2)
C7—C8—C10—C11177.34 (9)C19—C20—C25—C24177.44 (14)
C9—C8—C10—C1170.09 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.860 (18)2.045 (18)2.8858 (17)165.6 (15)
O2—H2···O3ii0.91 (2)1.99 (2)2.8463 (13)155.9 (18)
O2—H2···O2ii0.91 (2)2.57 (2)3.0274 (18)111.9 (14)
O5—H5B···O3iii0.96 (3)1.97 (3)2.8969 (17)161 (3)
N12—H12···O1iv0.877 (16)2.044 (16)2.8329 (14)149.2 (14)
C17—H17···Cg30.933.153.8226 (17)131
C16—H16···Cg5i0.932.753.5140 (19)140
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H18N2O4·H2O
Mr404.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8243 (3), 9.9304 (6), 11.4460 (5)
α, β, γ (°)107.517 (2), 114.227 (3), 93.918 (2)
V3)947.17 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.972, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
16894, 3335, 3045
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.05
No. of reflections3335
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.860 (18)2.045 (18)2.8858 (17)165.6 (15)
O2—H2···O3ii0.91 (2)1.99 (2)2.8463 (13)155.9 (18)
O2—H2···O2ii0.91 (2)2.57 (2)3.0274 (18)111.9 (14)
O5—H5B···O3iii0.96 (3)1.97 (3)2.8969 (17)161 (3)
N12—H12···O1iv0.877 (16)2.044 (16)2.8329 (14)149.2 (14)
C17—H17···Cg30.933.15323.8226 (17)130.45
C16—H16···Cg5i0.932.74833.5140 (19)140.25
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds