organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-6-meth­­oxy-2,2′-bi­pyridine-5-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 9 March 2009; accepted 2 April 2009; online 8 April 2009)

There are two independent mol­ecules in the asymmetric unit of the title compound, C18H12ClN3O. The two pyridine rings are almost coplanar [dihedral angles between the rings: 2.87 (15) and 5.36 (16)°] while the chloro­phenyl rings are twisted out of the plane of the adjacent bipyridine ring by 44.1 (1) and 43.8 (1)° in the two mol­ecules. The crystal packing is stabilized by C—H⋯N and C—H⋯Cl inter­actions.

Related literature

Pyridine derivatives possess phospho­diesterase-inhibiting (Heintzelman et al., 2003a[Heintzelman, G. R., Averill, K. M., Dodd, J. H., Demarest, K. T., Tang, Y., Jackson, P. F. (2003a). Chem. Abstr. 139, 350637, 730.],b[Heintzelman, G. R., Averill, K. M., Dodd, J. H., Demarest, K. T., Tang, Y., Jackson, P. F. (2003b). World Patent WO 2003088963.]), anti­fungal (Cook et al., 2004a[Cook, C. E., Sloan, C. D., Thomas, B. F., Navarro, H. A. (2004a). Chem. Abstr. 141, 157039, 861.],b[Cook, C. E., Sloan, C. D., Thomas, B. F., Navarro, H. A. (2004b). US Patent 2004147539.]), anti­fertility (Upton et al., 2000[Upton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett., 10, 1277-1279.]) and anti­arrhythmic activities (Ellefson et al., 1978[Ellefson, C. R., Woo, C. M. & Cusic, J. W. (1978). J. Med. Chem., 21, 340-343.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12ClN3O

  • Mr = 321.76

  • Monoclinic, P 21

  • a = 9.5869 (5) Å

  • b = 13.8761 (7) Å

  • c = 12.2124 (6) Å

  • β = 106.896 (2)°

  • V = 1554.47 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.951

  • 17581 measured reflections

  • 6950 independent reflections

  • 4300 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.00

  • 6950 reflections

  • 417 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3268 Friedel pairs

  • Flack parameter: 0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N9′i 0.93 2.58 3.321 (4) 137
C21—H21⋯Cl1ii 0.93 2.80 3.597 (3) 144
C11′—H11′⋯N9iii 0.93 2.60 3.349 (4) 138
C21′—H21′⋯Cl1′ii 0.93 2.71 3.475 (3) 140
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+2]; (ii) x-1, y, z-1; (iii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine derivatives possess phosphodiesterase inhibiting (Heintzelman et al., 2003a,b), antifungal (Cook et al., 2004a,b), antifertility (Upton et al.,2000) and antiarrhythmic activities (Ellefson et al., 1978). The crystallographic study was useful to ascertain the molecular conformation.

The ORTEP plot of the molecule is shown in Fig.1. There are two crystallographically independent molecules in the asymmetric unit. The two pyridine rings lie in the same plane which is evidenced from the dihedral angles of 2.87 (15)° and 5.36 (16)° for the molecules 1 & 2 respectively. The planar chlorophenyl rings are twisted away from the bipyridine ring by 44.1 (1)° for (molecule 1) and 43.8 (1)° for (molecule 2), respectively. The bond angles of C3—C8—N9 (177.9 (4))° and C3'-C8'-N9' (178.3 (3))° show linearity of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing is controlled by C—H···N and C—H···Cl intermolecular interactions in addition to van der Waals forces. Atoms C11 and C11' at (x, y, z) donate one proton each to N9' (-x,+y + 1/2,-z + 2) and N9 (-x,+y - 1/2,-z + 2) which connect the molecules to form a dimer with a graph-set-motiff R22(14) (Bernstein et al., 1995). These dimers are linked through intermolecular C21—H21···Cl1 hydrogen bond chain running along c axis which is shown in Fig. 2.

Related literature top

Pyridine derivatives possess phosphodiesterase-inhibiting (Heintzelman et al., 2003a,b), antifungal (Cook et al., 2004a,b), antifertility (Upton et al., 2000) and antiarrhythmic activities (Ellefson et al., 1978). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of p-chlorobenzaldehyde (1 eq), 2-acetyl pyridine and sodium hydroxide (1.2 eq) in methanol was refluxed for 30 min. After that malanonitrile (1 eq) was added and the reaction was continued to 3 h. With the completion of the reaction (as monitored by TLC), it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuo. The crude product was chromatographed and isolated in 76% yield (90:10, petroleum ether: ethyl acetate). The compound was recrystallized in ethanol.

Refinement top

All H atoms were positioned geometrically (C—H=0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
4-(4-Chlorophenyl)-6-methoxy-2,2'-bipyridine-5-carbonitrile top
Crystal data top
C18H12ClN3OF(000) = 664
Mr = 321.76Dx = 1.375 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3721 reflections
a = 9.5869 (5) Åθ = 1.7–27.5°
b = 13.8761 (7) ŵ = 0.25 mm1
c = 12.2124 (6) ÅT = 293 K
β = 106.896 (2)°Block, colorless
V = 1554.47 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6950 independent reflections
Radiation source: fine-focus sealed tube4300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1212
Tmin = 0.927, Tmax = 0.951k = 1717
17581 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1394P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
6950 reflectionsΔρmax = 0.24 e Å3
417 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 3268 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C18H12ClN3OV = 1554.47 (14) Å3
Mr = 321.76Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.5869 (5) ŵ = 0.25 mm1
b = 13.8761 (7) ÅT = 293 K
c = 12.2124 (6) Å0.30 × 0.25 × 0.20 mm
β = 106.896 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
6950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4300 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.951Rint = 0.035
17581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.24 e Å3
S = 1.00Δρmin = 0.18 e Å3
6950 reflectionsAbsolute structure: Flack (1983), 3268 Friedel pairs
417 parametersAbsolute structure parameter: 0.05 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2'0.0524 (3)0.2747 (2)0.5616 (2)0.0453 (7)
C20.1641 (3)0.5282 (2)0.7627 (2)0.0485 (7)
C3'0.0529 (3)0.2755 (2)0.66886 (19)0.0438 (6)
C30.0610 (3)0.5309 (2)0.86978 (19)0.0448 (6)
C4'0.1994 (3)0.2704 (2)0.67256 (19)0.0450 (6)
C40.0852 (3)0.53628 (19)0.87589 (19)0.0427 (6)
C50.1208 (3)0.5349 (2)0.77260 (19)0.0452 (6)
H50.21770.53730.77260.054*
C5'0.2306 (3)0.2696 (2)0.56900 (19)0.0467 (6)
H5'0.32710.26720.56790.056*
C60.0109 (3)0.5301 (2)0.6710 (2)0.0439 (6)
C6'0.1199 (3)0.2723 (2)0.4671 (2)0.0430 (6)
C7'0.3014 (3)0.2777 (3)0.4542 (2)0.0730 (9)
H7D0.28430.33070.40920.110*
H7F0.39570.28450.46580.110*
H7E0.29770.21830.41470.110*
C70.4109 (3)0.5274 (3)0.6510 (2)0.0769 (10)
H7A0.38620.57660.60460.115*
H7B0.50540.54070.65980.115*
H7C0.41250.46590.61470.115*
C8'0.0057 (3)0.2856 (2)0.7694 (2)0.0506 (7)
C80.1112 (3)0.5223 (2)0.9698 (2)0.0509 (7)
C100.2010 (3)0.5420 (2)0.9863 (2)0.0452 (7)
C10'0.3164 (3)0.2671 (2)0.78201 (19)0.0451 (6)
C110.1893 (3)0.6056 (2)1.0710 (2)0.0488 (7)
H110.10810.64551.05750.059*
C11'0.3071 (3)0.2046 (2)0.8686 (2)0.0540 (7)
H11'0.22620.16460.85730.065*
C12'0.4158 (3)0.2011 (2)0.9709 (2)0.0601 (8)
H12'0.40890.15871.02810.072*
C120.2950 (3)0.6106 (2)1.1738 (2)0.0540 (7)
H120.28670.65381.22980.065*
C13'0.5332 (3)0.2601 (3)0.9877 (2)0.0609 (9)
C130.4138 (3)0.5507 (3)1.1932 (2)0.0565 (8)
C140.4309 (3)0.4900 (3)1.1102 (2)0.0646 (9)
H140.51410.45201.12330.078*
C14'0.5486 (3)0.3210 (3)0.9047 (3)0.0661 (9)
H14'0.63070.36000.91720.079*
C15'0.4401 (3)0.3240 (2)0.8012 (2)0.0567 (8)
H15'0.45040.36480.74360.068*
C150.3241 (3)0.4854 (2)1.0067 (2)0.0572 (8)
H150.33510.44380.95010.069*
C160.0424 (3)0.5259 (2)0.5593 (2)0.0454 (7)
C16'0.1494 (3)0.2756 (2)0.3547 (2)0.0464 (6)
C18'0.3136 (4)0.2815 (3)0.2542 (3)0.0821 (11)
H18'0.40990.28070.25240.098*
C180.2082 (4)0.5207 (3)0.4595 (3)0.0717 (10)
H180.30520.52020.45940.086*
C190.1032 (4)0.5161 (2)0.3559 (3)0.0662 (10)
H190.12840.51280.28800.079*
C19'0.2062 (4)0.2900 (3)0.1528 (2)0.0715 (10)
H19'0.22990.29500.08440.086*
C20'0.0658 (4)0.2910 (3)0.1527 (2)0.0643 (9)
H20'0.00910.29680.08480.077*
C200.0384 (4)0.5166 (3)0.3552 (2)0.0629 (9)
H200.11270.51330.28660.075*
C210.0705 (3)0.5222 (2)0.4585 (2)0.0554 (7)
H210.16680.52360.46010.067*
C21'0.0364 (3)0.2832 (2)0.2554 (2)0.0550 (8)
H21'0.05960.28310.25810.066*
N10.1311 (2)0.52769 (17)0.66537 (16)0.0476 (6)
N1'0.0218 (2)0.27322 (17)0.46358 (16)0.0477 (5)
N9'0.0333 (3)0.2959 (2)0.8486 (2)0.0696 (8)
N90.1527 (3)0.5130 (2)1.0466 (2)0.0711 (8)
N17'0.2879 (3)0.2742 (2)0.35573 (18)0.0655 (7)
N170.1810 (3)0.5257 (2)0.56052 (18)0.0594 (7)
O10.3049 (2)0.52612 (18)0.76094 (15)0.0623 (6)
O1'0.1919 (2)0.27689 (18)0.56248 (16)0.0617 (6)
Cl1'0.66572 (10)0.25841 (9)1.11925 (7)0.0970 (4)
Cl10.54493 (9)0.55353 (8)1.32596 (6)0.0888 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2'0.0455 (16)0.0402 (16)0.0507 (15)0.0023 (15)0.0149 (12)0.0032 (13)
C20.0441 (15)0.0460 (17)0.0545 (15)0.0014 (14)0.0130 (12)0.0042 (14)
C3'0.0524 (16)0.0416 (16)0.0372 (13)0.0055 (15)0.0126 (11)0.0029 (14)
C30.0522 (16)0.0423 (15)0.0408 (13)0.0036 (14)0.0149 (11)0.0003 (13)
C4'0.0522 (15)0.0395 (15)0.0422 (13)0.0043 (15)0.0121 (11)0.0023 (14)
C40.0472 (15)0.0382 (15)0.0422 (13)0.0042 (13)0.0120 (11)0.0021 (13)
C50.0436 (14)0.0473 (16)0.0448 (13)0.0024 (13)0.0130 (10)0.0011 (13)
C5'0.0505 (15)0.0454 (16)0.0433 (13)0.0005 (14)0.0122 (11)0.0043 (13)
C60.0504 (16)0.0392 (15)0.0416 (13)0.0009 (13)0.0128 (11)0.0008 (13)
C6'0.0496 (16)0.0355 (14)0.0427 (13)0.0009 (14)0.0113 (11)0.0023 (13)
C7'0.0506 (17)0.090 (3)0.0700 (19)0.002 (2)0.0034 (14)0.000 (2)
C70.0470 (17)0.102 (3)0.074 (2)0.010 (2)0.0058 (14)0.011 (2)
C8'0.0565 (18)0.0444 (19)0.0512 (16)0.0023 (16)0.0161 (14)0.0052 (14)
C80.0524 (16)0.0514 (18)0.0482 (15)0.0058 (15)0.0137 (12)0.0002 (15)
C100.0432 (15)0.0486 (17)0.0427 (13)0.0014 (14)0.0108 (11)0.0027 (14)
C10'0.0512 (15)0.0468 (15)0.0377 (12)0.0019 (14)0.0135 (10)0.0030 (13)
C110.0535 (17)0.0529 (17)0.0414 (14)0.0028 (14)0.0159 (12)0.0007 (13)
C11'0.0587 (18)0.0557 (18)0.0451 (15)0.0016 (14)0.0110 (12)0.0012 (14)
C12'0.068 (2)0.066 (2)0.0444 (15)0.0144 (17)0.0133 (14)0.0025 (15)
C120.0605 (18)0.0609 (19)0.0416 (14)0.0107 (16)0.0167 (13)0.0050 (13)
C13'0.0528 (18)0.076 (2)0.0464 (15)0.0167 (18)0.0034 (13)0.0115 (17)
C130.0516 (17)0.069 (2)0.0411 (14)0.0138 (17)0.0015 (12)0.0058 (16)
C140.0552 (19)0.068 (2)0.0638 (19)0.0076 (17)0.0063 (16)0.0046 (18)
C14'0.0426 (17)0.078 (2)0.074 (2)0.0076 (16)0.0120 (16)0.0202 (19)
C15'0.0550 (18)0.060 (2)0.0569 (17)0.0061 (15)0.0200 (14)0.0035 (15)
C150.0569 (18)0.057 (2)0.0541 (16)0.0098 (15)0.0107 (14)0.0035 (15)
C160.0549 (17)0.0386 (16)0.0418 (14)0.0049 (15)0.0124 (12)0.0012 (13)
C16'0.0569 (16)0.0394 (15)0.0427 (13)0.0013 (15)0.0143 (11)0.0003 (13)
C18'0.076 (2)0.122 (3)0.0567 (18)0.010 (2)0.0321 (16)0.009 (2)
C180.077 (2)0.083 (3)0.065 (2)0.008 (2)0.0367 (18)0.004 (2)
C190.097 (3)0.059 (2)0.0525 (18)0.012 (2)0.0378 (18)0.0001 (16)
C19'0.094 (3)0.081 (3)0.0451 (16)0.003 (2)0.0294 (17)0.0030 (18)
C20'0.083 (2)0.065 (2)0.0393 (15)0.0019 (19)0.0100 (15)0.0059 (16)
C200.085 (2)0.058 (2)0.0422 (16)0.0044 (19)0.0135 (16)0.0041 (15)
C210.0601 (18)0.0571 (19)0.0465 (15)0.0019 (16)0.0113 (12)0.0031 (14)
C21'0.0580 (17)0.062 (2)0.0438 (15)0.0013 (16)0.0121 (12)0.0027 (15)
N10.0496 (13)0.0515 (15)0.0400 (11)0.0026 (12)0.0102 (9)0.0012 (11)
N1'0.0509 (13)0.0470 (13)0.0436 (12)0.0002 (13)0.0113 (10)0.0018 (11)
N9'0.093 (2)0.0659 (19)0.0600 (16)0.0049 (15)0.0382 (15)0.0010 (14)
N90.0778 (18)0.084 (2)0.0598 (15)0.0023 (16)0.0336 (13)0.0006 (15)
N17'0.0601 (16)0.089 (2)0.0499 (13)0.0088 (17)0.0201 (11)0.0099 (15)
N170.0592 (15)0.0710 (18)0.0500 (13)0.0052 (15)0.0190 (11)0.0064 (14)
O10.0460 (11)0.0844 (17)0.0555 (11)0.0024 (12)0.0132 (9)0.0104 (12)
O1'0.0462 (11)0.0785 (16)0.0605 (12)0.0000 (12)0.0160 (9)0.0005 (12)
Cl1'0.0709 (5)0.1312 (9)0.0664 (5)0.0322 (6)0.0157 (4)0.0216 (6)
Cl10.0726 (5)0.1207 (8)0.0551 (4)0.0156 (5)0.0101 (3)0.0127 (5)
Geometric parameters (Å, º) top
C2'—N1'1.313 (3)C11—H110.9300
C2'—O1'1.341 (3)C11'—C12'1.375 (3)
C2'—C3'1.403 (3)C11'—H11'0.9300
C2—N11.316 (3)C12'—C13'1.358 (5)
C2—O11.344 (3)C12'—H12'0.9300
C2—C31.391 (3)C12—C131.374 (4)
C3'—C4'1.394 (3)C12—H120.9300
C3'—C8'1.433 (4)C13'—C14'1.361 (5)
C3—C41.384 (3)C13'—Cl1'1.735 (3)
C3—C81.442 (4)C13—C141.364 (4)
C4'—C5'1.382 (3)C13—Cl11.739 (3)
C4'—C10'1.475 (3)C14—C151.378 (4)
C4—C51.399 (3)C14—H140.9300
C4—C101.478 (3)C14'—C15'1.384 (4)
C5—C61.376 (3)C14'—H14'0.9300
C5—H50.9300C15'—H15'0.9300
C5'—C6'1.382 (3)C15—H150.9300
C5'—H5'0.9300C16—N171.324 (3)
C6—N11.343 (3)C16—C211.384 (3)
C6—C161.481 (3)C16'—N17'1.325 (3)
C6'—N1'1.346 (3)C16'—C21'1.376 (3)
C6'—C16'1.481 (3)C18'—N17'1.337 (4)
C7'—O1'1.430 (3)C18'—C19'1.366 (4)
C7'—H7D0.9600C18'—H18'0.9300
C7'—H7F0.9600C18—N171.335 (3)
C7'—H7E0.9600C18—C191.370 (4)
C7—O11.430 (3)C18—H180.9300
C7—H7A0.9600C19—C201.355 (4)
C7—H7B0.9600C19—H190.9300
C7—H7C0.9600C19'—C20'1.346 (4)
C8'—N9'1.143 (4)C19'—H19'0.9300
C8—N91.127 (3)C20'—C21'1.367 (4)
C10—C151.379 (4)C20'—H20'0.9300
C10—C111.388 (4)C20—C211.384 (4)
C10'—C15'1.387 (4)C20—H200.9300
C10'—C11'1.391 (4)C21—H210.9300
C11—C121.368 (4)C21'—H21'0.9300
N1'—C2'—O1'119.7 (2)C11'—C12'—H12'120.3
N1'—C2'—C3'124.1 (2)C11—C12—C13118.9 (3)
O1'—C2'—C3'116.2 (2)C11—C12—H12120.5
N1—C2—O1119.3 (2)C13—C12—H12120.5
N1—C2—C3123.9 (2)C12'—C13'—C14'121.7 (3)
O1—C2—C3116.8 (2)C12'—C13'—Cl1'118.9 (3)
C4'—C3'—C2'118.4 (2)C14'—C13'—Cl1'119.3 (3)
C4'—C3'—C8'122.9 (2)C14—C13—C12121.2 (2)
C2'—C3'—C8'118.7 (2)C14—C13—Cl1119.8 (3)
C4—C3—C2118.9 (2)C12—C13—Cl1119.0 (2)
C4—C3—C8122.8 (2)C13—C14—C15119.5 (3)
C2—C3—C8118.2 (2)C13—C14—H14120.2
C5'—C4'—C3'117.0 (2)C15—C14—H14120.2
C5'—C4'—C10'121.3 (2)C13'—C14'—C15'118.9 (3)
C3'—C4'—C10'121.6 (2)C13'—C14'—H14'120.5
C3—C4—C5117.3 (2)C15'—C14'—H14'120.5
C3—C4—C10122.1 (2)C14'—C15'—C10'121.0 (3)
C5—C4—C10120.5 (2)C14'—C15'—H15'119.5
C6—C5—C4119.4 (2)C10'—C15'—H15'119.5
C6—C5—H5120.3C14—C15—C10120.6 (3)
C4—C5—H5120.3C14—C15—H15119.7
C4'—C5'—C6'120.7 (2)C10—C15—H15119.7
C4'—C5'—H5'119.7N17—C16—C21122.2 (2)
C6'—C5'—H5'119.7N17—C16—C6117.5 (2)
N1—C6—C5123.1 (2)C21—C16—C6120.3 (2)
N1—C6—C16115.3 (2)N17'—C16'—C21'122.7 (2)
C5—C6—C16121.6 (2)N17'—C16'—C6'116.9 (2)
N1'—C6'—C5'122.2 (2)C21'—C16'—C6'120.4 (3)
N1'—C6'—C16'115.6 (2)N17'—C18'—C19'123.6 (3)
C5'—C6'—C16'122.1 (2)N17'—C18'—H18'118.2
O1'—C7'—H7D109.5C19'—C18'—H18'118.2
O1'—C7'—H7F109.5N17—C18—C19124.5 (3)
H7D—C7'—H7F109.5N17—C18—H18117.7
O1'—C7'—H7E109.5C19—C18—H18117.7
H7D—C7'—H7E109.5C20—C19—C18118.1 (3)
H7F—C7'—H7E109.5C20—C19—H19120.9
O1—C7—H7A109.5C18—C19—H19120.9
O1—C7—H7B109.5C20'—C19'—C18'119.5 (3)
H7A—C7—H7B109.5C20'—C19'—H19'120.3
O1—C7—H7C109.5C18'—C19'—H19'120.3
H7A—C7—H7C109.5C19'—C20'—C21'118.1 (3)
H7B—C7—H7C109.5C19'—C20'—H20'120.9
N9'—C8'—C3'178.3 (4)C21'—C20'—H20'120.9
N9—C8—C3177.9 (3)C19—C20—C21118.8 (3)
C15—C10—C11118.5 (2)C19—C20—H20120.6
C15—C10—C4120.7 (2)C21—C20—H20120.6
C11—C10—C4120.8 (2)C16—C21—C20119.3 (3)
C15'—C10'—C11'117.9 (2)C16—C21—H21120.4
C15'—C10'—C4'121.6 (2)C20—C21—H21120.4
C11'—C10'—C4'120.6 (2)C20'—C21'—C16'119.7 (3)
C12—C11—C10121.2 (3)C20'—C21'—H21'120.2
C12—C11—H11119.4C16'—C21'—H21'120.2
C10—C11—H11119.4C2—N1—C6117.4 (2)
C12'—C11'—C10'120.9 (3)C2'—N1'—C6'117.50 (19)
C12'—C11'—H11'119.6C16'—N17'—C18'116.4 (3)
C10'—C11'—H11'119.6C16—N17—C18117.1 (2)
C13'—C12'—C11'119.5 (3)C2—O1—C7116.9 (2)
C13'—C12'—H12'120.3C2'—O1'—C7'117.3 (2)
N1'—C2'—C3'—C4'2.8 (5)C12—C13—C14—C153.0 (5)
O1'—C2'—C3'—C4'178.1 (3)Cl1—C13—C14—C15177.6 (2)
N1'—C2'—C3'—C8'174.6 (3)C12'—C13'—C14'—C15'1.2 (5)
O1'—C2'—C3'—C8'4.5 (4)Cl1'—C13'—C14'—C15'178.0 (2)
N1—C2—C3—C42.0 (4)C13'—C14'—C15'—C10'0.8 (5)
O1—C2—C3—C4178.0 (3)C11'—C10'—C15'—C14'2.1 (4)
N1—C2—C3—C8174.4 (3)C4'—C10'—C15'—C14'179.4 (3)
O1—C2—C3—C85.6 (4)C13—C14—C15—C100.5 (5)
C2'—C3'—C4'—C5'3.1 (4)C11—C10—C15—C141.8 (4)
C8'—C3'—C4'—C5'174.2 (3)C4—C10—C15—C14179.2 (3)
C2'—C3'—C4'—C10'177.7 (3)N1—C6—C16—N17178.4 (3)
C8'—C3'—C4'—C10'5.1 (5)C5—C6—C16—N170.8 (4)
C2—C3—C4—C52.4 (4)N1—C6—C16—C211.6 (4)
C8—C3—C4—C5173.8 (3)C5—C6—C16—C21179.2 (3)
C2—C3—C4—C10178.3 (3)N1'—C6'—C16'—N17'179.6 (3)
C8—C3—C4—C105.4 (4)C5'—C6'—C16'—N17'1.2 (4)
C3—C4—C5—C61.1 (4)N1'—C6'—C16'—C21'2.5 (4)
C10—C4—C5—C6179.6 (3)C5'—C6'—C16'—C21'176.7 (3)
C3'—C4'—C5'—C6'1.0 (4)N17—C18—C19—C200.1 (6)
C10'—C4'—C5'—C6'179.7 (3)N17'—C18'—C19'—C20'0.2 (7)
C4—C5—C6—N10.8 (4)C18'—C19'—C20'—C21'0.1 (6)
C4—C5—C6—C16178.3 (3)C18—C19—C20—C210.3 (5)
C4'—C5'—C6'—N1'1.8 (4)N17—C16—C21—C201.1 (5)
C4'—C5'—C6'—C16'177.4 (3)C6—C16—C21—C20178.9 (3)
C4'—C3'—C8'—N9'116 (12)C19—C20—C21—C160.8 (5)
C2'—C3'—C8'—N9'62 (12)C19'—C20'—C21'—C16'0.6 (5)
C4—C3—C8—N9124 (9)N17'—C16'—C21'—C20'0.9 (5)
C2—C3—C8—N952 (9)C6'—C16'—C21'—C20'176.8 (3)
C3—C4—C10—C15134.3 (3)O1—C2—N1—C6179.8 (3)
C5—C4—C10—C1545.0 (4)C3—C2—N1—C60.2 (4)
C3—C4—C10—C1146.8 (4)C5—C6—N1—C21.2 (4)
C5—C4—C10—C11134.0 (3)C16—C6—N1—C2177.9 (2)
C5'—C4'—C10'—C15'45.0 (4)O1'—C2'—N1'—C6'179.2 (3)
C3'—C4'—C10'—C15'134.2 (3)C3'—C2'—N1'—C6'0.1 (5)
C5'—C4'—C10'—C11'133.5 (3)C5'—C6'—N1'—C2'2.2 (4)
C3'—C4'—C10'—C11'47.3 (4)C16'—C6'—N1'—C2'177.0 (2)
C15—C10—C11—C121.8 (4)C21'—C16'—N17'—C18'0.6 (5)
C4—C10—C11—C12179.2 (3)C6'—C16'—N17'—C18'177.2 (3)
C15'—C10'—C11'—C12'1.4 (4)C19'—C18'—N17'—C16'0.0 (6)
C4'—C10'—C11'—C12'179.9 (3)C21—C16—N17—C180.8 (5)
C10'—C11'—C12'—C13'0.5 (4)C6—C16—N17—C18179.2 (3)
C10—C11—C12—C130.6 (4)C19—C18—N17—C160.3 (6)
C11'—C12'—C13'—C14'1.9 (5)N1—C2—O1—C72.6 (4)
C11'—C12'—C13'—Cl1'177.3 (2)C3—C2—O1—C7177.5 (3)
C11—C12—C13—C143.0 (5)N1'—C2'—O1'—C7'0.1 (4)
C11—C12—C13—Cl1177.5 (2)C3'—C2'—O1'—C7'179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N9i0.932.583.321 (4)137
C21—H21···Cl1ii0.932.803.597 (3)144
C11—H11···N9iii0.932.603.349 (4)138
C21—H21···Cl1ii0.932.713.475 (3)140
Symmetry codes: (i) x, y+1/2, z+2; (ii) x1, y, z1; (iii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC18H12ClN3O
Mr321.76
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.5869 (5), 13.8761 (7), 12.2124 (6)
β (°) 106.896 (2)
V3)1554.47 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.927, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
17581, 6950, 4300
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.00
No. of reflections6950
No. of parameters417
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18
Absolute structureFlack (1983), 3268 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N9'i0.932.583.321 (4)136.8
C21—H21···Cl1ii0.932.803.597 (3)143.8
C11'—H11'···N9iii0.932.603.349 (4)137.5
C21'—H21'···Cl1'ii0.932.713.475 (3)140.4
Symmetry codes: (i) x, y+1/2, z+2; (ii) x1, y, z1; (iii) x, y1/2, z+2.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, C. E., Sloan, C. D., Thomas, B. F., Navarro, H. A. (2004a). Chem. Abstr. 141, 157039, 861.  Google Scholar
First citationCook, C. E., Sloan, C. D., Thomas, B. F., Navarro, H. A. (2004b). US Patent 2004147539.  Google Scholar
First citationEllefson, C. R., Woo, C. M. & Cusic, J. W. (1978). J. Med. Chem., 21, 340–343.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeintzelman, G. R., Averill, K. M., Dodd, J. H., Demarest, K. T., Tang, Y., Jackson, P. F. (2003a). Chem. Abstr. 139, 350637, 730.  Google Scholar
First citationHeintzelman, G. R., Averill, K. M., Dodd, J. H., Demarest, K. T., Tang, Y., Jackson, P. F. (2003b). World Patent WO 2003088963.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett., 10, 1277–1279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds