organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1011

2-[(E)-3-Phenyl­prop-2-en­yl]-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 3 April 2009; accepted 6 April 2009; online 8 April 2009)

In the crystal structure of the title compound, C16H13NO3S, the benzisothia­zole group is almost planar (r.m.s. deviation for all non-H atoms excluding the two O atoms bonded to S = 0.009 Å). The dihedral angle between the fused ring and the terminal ring is 13.8 (1)°. In the crystal, mol­ecules are linked through inter­molecular C—H⋯O contacts forming a chain of mol­ecules along b.

Related literature

For the synthesis of benzothia­zine and benzisothia­zol derivatives, see: Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. E64, o724.]). For the biological activity of benzisothia­zols, see: Kapui et al. (2003[Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1-9.]); Liang et al. (2006[Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902-7910.]). For related structures, see: Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.], 2007a[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.],b[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.],c[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3S

  • Mr = 299.33

  • Monoclinic, P 21 /n

  • a = 6.9375 (5) Å

  • b = 7.1579 (4) Å

  • c = 29.673 (2) Å

  • β = 96.160 (4)°

  • V = 1464.99 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.11 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 8250 measured reflections

  • 3606 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.178

  • S = 0.96

  • 3606 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.29 3.174 (4) 158
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

Benzisothiazolone-1,1-dioxide and its various derivatives are well known as biologically active compounds e.g., saccharin has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). Few of its derivatives are considered to be the most potent orally active human leucocyte elastase (HLE) inhibitors for the treatment ofchronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), cystic fibrosis, asthma and other inflammatory diseases (Kapui et al., 2003). Its N-alkyl derivatives have been successfully transformed to non-steroidal anti-inflammatory drugs e.g., piroxicam (Zia-ur-Rehman et al., 2006).

In continuation to our research on the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives (Zia-ur-Rehman et al., 2009; Zia-ur-Rehman et al., 2006), we have in addtion, worked on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2006; Siddiqui et al., 2008). Herein, crystal structure of the title compound (I) is described. The benzisothiazole moiety is exactly planar.The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui et al., 2007a-c). Each molecule is linked to its adjacent one through C—H···O contacts forming a chain of molecules along b.

Related literature top

For the synthesis of benzothiazine and benzisothiazol derivatives, see: Zia-ur-Rehman et al. (2006, 2009); Siddiqui et al. (2008). For the biological activity of benzisothiazols, see: Kapui et al. (2003); Liang et al. (2006). For related structures, see: Siddiqui et al. (2006, 2007a,b,c).

Experimental top

A mixture of 2,3-dihydro-1,2-benzisothiazol-3-one-1,1-dioxide (1.83 g, 10.0 mmoles), dimethyl formamide (5.0 ml) and cinnamyl chloride (1.67 g, 10.0 mmoles) was stirred for a period of three hours at 90°C. Contents were cooled to room temperature; poured over crushed ice to get white coloured precipitates which were filtered, washed and dried. Crystallization of the white precipitates (in methanol) afforded suitable crystals for X-ray studies after recrystalization in methanol.

Refinement top

H atoms bound to C were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(C methyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing inter molecular C—H···O interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-[(E)-3-Phenylprop-2-enyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C16H13NO3SF(000) = 624
Mr = 299.33Dx = 1.357 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1453 reflections
a = 6.9375 (5) Åθ = 2.8–20.7°
b = 7.1579 (4) ŵ = 0.23 mm1
c = 29.673 (2) ÅT = 296 K
β = 96.160 (4)°Needles, white
V = 1464.99 (17) Å30.39 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1722 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 28.3°, θmin = 1.4°
ϕ and ω scansh = 98
8250 measured reflectionsk = 89
3606 independent reflectionsl = 3539
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0875P)2]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H13NO3SV = 1464.99 (17) Å3
Mr = 299.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9375 (5) ŵ = 0.23 mm1
b = 7.1579 (4) ÅT = 296 K
c = 29.673 (2) Å0.39 × 0.11 × 0.10 mm
β = 96.160 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1722 reflections with I > 2σ(I)
8250 measured reflectionsRint = 0.034
3606 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.96Δρmax = 0.32 e Å3
3606 reflectionsΔρmin = 0.40 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25184 (11)0.21860 (10)0.08353 (3)0.0673 (3)
O10.2457 (3)0.2827 (3)0.05026 (8)0.0871 (7)
O20.4314 (3)0.2892 (3)0.10446 (8)0.0937 (8)
O30.0787 (3)0.2970 (3)0.09666 (7)0.0909 (7)
N10.2464 (3)0.0118 (3)0.09024 (7)0.0634 (6)
C10.2500 (4)0.1992 (4)0.02512 (9)0.0552 (7)
C20.2505 (4)0.3412 (4)0.00625 (12)0.0800 (9)
H20.25120.46610.00250.096*
C30.2499 (5)0.2902 (6)0.05133 (12)0.0914 (11)
H30.24950.38270.07330.110*
C40.2498 (4)0.1074 (6)0.06412 (11)0.0805 (9)
H40.24960.07750.09460.097*
C50.2501 (4)0.0333 (5)0.03269 (10)0.0654 (8)
H50.25000.15780.04160.078*
C60.2506 (3)0.0140 (4)0.01241 (8)0.0532 (6)
C70.2488 (4)0.1141 (4)0.05129 (10)0.0609 (7)
C80.2380 (4)0.0994 (5)0.13459 (10)0.0799 (9)
H8A0.15910.02300.15240.096*
H8B0.17620.22060.13040.096*
C90.4368 (4)0.1238 (5)0.16027 (10)0.0735 (8)
H90.49490.01930.17460.088*
C100.5312 (5)0.2786 (4)0.16377 (9)0.0700 (8)
H100.47040.38260.14990.084*
C110.7266 (4)0.3074 (4)0.18770 (9)0.0603 (7)
C120.8373 (5)0.4574 (4)0.17645 (9)0.0768 (9)
H120.78710.54160.15440.092*
C131.0228 (5)0.4829 (5)0.19796 (11)0.0834 (10)
H131.09820.58210.18970.100*
C141.0949 (5)0.3626 (5)0.23127 (12)0.0838 (10)
H141.21930.38010.24570.101*
C150.9854 (5)0.2174 (5)0.24335 (11)0.0799 (9)
H151.03370.13750.26660.096*
C160.8052 (5)0.1884 (4)0.22158 (10)0.0745 (9)
H160.73320.08650.22960.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0771 (6)0.0647 (5)0.0584 (5)0.0005 (4)0.0004 (4)0.0158 (4)
O10.1019 (17)0.0544 (13)0.1044 (19)0.0035 (11)0.0083 (13)0.0060 (11)
O20.1041 (17)0.0869 (15)0.0828 (16)0.0187 (12)0.0234 (13)0.0209 (12)
O30.1006 (17)0.0970 (17)0.0785 (16)0.0211 (12)0.0253 (13)0.0253 (12)
N10.0710 (15)0.0670 (15)0.0509 (14)0.0007 (11)0.0009 (11)0.0008 (11)
C10.0510 (15)0.0568 (16)0.0570 (16)0.0012 (11)0.0015 (13)0.0099 (13)
C20.098 (2)0.0619 (19)0.080 (2)0.0007 (16)0.0071 (19)0.0011 (17)
C30.104 (3)0.107 (3)0.064 (2)0.004 (2)0.013 (2)0.014 (2)
C40.067 (2)0.113 (3)0.062 (2)0.0019 (18)0.0115 (16)0.012 (2)
C50.0494 (16)0.081 (2)0.0669 (19)0.0027 (14)0.0093 (14)0.0217 (17)
C60.0398 (14)0.0625 (17)0.0572 (16)0.0007 (11)0.0043 (12)0.0131 (13)
C70.0500 (16)0.0592 (19)0.073 (2)0.0009 (12)0.0023 (14)0.0112 (15)
C80.072 (2)0.100 (2)0.068 (2)0.0014 (17)0.0060 (16)0.0131 (17)
C90.082 (2)0.079 (2)0.0603 (19)0.0036 (17)0.0112 (16)0.0005 (15)
C100.084 (2)0.074 (2)0.0532 (18)0.0113 (17)0.0096 (16)0.0003 (14)
C110.0657 (18)0.0722 (19)0.0438 (15)0.0036 (14)0.0103 (14)0.0014 (13)
C120.106 (3)0.076 (2)0.0497 (17)0.0063 (18)0.0141 (17)0.0012 (15)
C130.100 (3)0.089 (2)0.065 (2)0.0285 (19)0.0236 (19)0.0086 (18)
C140.067 (2)0.115 (3)0.069 (2)0.0069 (19)0.0076 (17)0.012 (2)
C150.073 (2)0.095 (2)0.070 (2)0.0056 (18)0.0020 (18)0.0096 (18)
C160.073 (2)0.078 (2)0.072 (2)0.0025 (15)0.0068 (17)0.0110 (16)
Geometric parameters (Å, º) top
S1—O31.418 (2)C8—C91.512 (4)
S1—O21.424 (2)C8—H8A0.9700
S1—N11.662 (2)C8—H8B0.9700
S1—C11.738 (3)C9—C101.286 (4)
O1—C71.207 (3)C9—H90.9300
N1—C71.370 (3)C10—C111.476 (4)
N1—C81.464 (3)C10—H100.9300
C1—C61.378 (3)C11—C121.382 (4)
C1—C21.378 (4)C11—C161.384 (4)
C2—C31.387 (4)C12—C131.386 (4)
C2—H20.9300C12—H120.9300
C3—C41.362 (5)C13—C141.365 (4)
C3—H30.9300C13—H130.9300
C4—C51.372 (4)C14—C151.358 (4)
C4—H40.9300C14—H140.9300
C5—C61.380 (3)C15—C161.360 (4)
C5—H50.9300C15—H150.9300
C6—C71.475 (4)C16—H160.9300
O3—S1—O2117.84 (14)N1—C8—C9112.4 (2)
O3—S1—N1109.21 (13)N1—C8—H8A109.1
O2—S1—N1109.29 (12)C9—C8—H8A109.1
O3—S1—C1112.95 (13)N1—C8—H8B109.1
O2—S1—C1112.08 (14)C9—C8—H8B109.1
N1—S1—C192.43 (12)H8A—C8—H8B107.9
C7—N1—C8122.3 (3)C10—C9—C8124.7 (3)
C7—N1—S1115.28 (19)C10—C9—H9117.7
C8—N1—S1122.4 (2)C8—C9—H9117.7
C6—C1—C2121.6 (3)C9—C10—C11126.3 (3)
C6—C1—S1110.5 (2)C9—C10—H10116.8
C2—C1—S1127.9 (2)C11—C10—H10116.8
C1—C2—C3117.2 (3)C12—C11—C16117.9 (3)
C1—C2—H2121.4C12—C11—C10119.8 (3)
C3—C2—H2121.4C16—C11—C10122.3 (3)
C4—C3—C2121.5 (3)C11—C12—C13120.3 (3)
C4—C3—H3119.3C11—C12—H12119.9
C2—C3—H3119.3C13—C12—H12119.9
C3—C4—C5121.0 (3)C14—C13—C12120.0 (3)
C3—C4—H4119.5C14—C13—H13120.0
C5—C4—H4119.5C12—C13—H13120.0
C4—C5—C6118.6 (3)C15—C14—C13120.1 (3)
C4—C5—H5120.7C15—C14—H14119.9
C6—C5—H5120.7C13—C14—H14119.9
C1—C6—C5120.1 (3)C14—C15—C16120.2 (3)
C1—C6—C7112.6 (2)C14—C15—H15119.9
C5—C6—C7127.3 (3)C16—C15—H15119.9
O1—C7—N1123.6 (3)C15—C16—C11121.5 (3)
O1—C7—C6127.1 (3)C15—C16—H16119.3
N1—C7—C6109.2 (2)C11—C16—H16119.3
O3—S1—N1—C7117.2 (2)C8—N1—C7—O10.6 (4)
O2—S1—N1—C7112.6 (2)S1—N1—C7—O1179.9 (2)
C1—S1—N1—C71.9 (2)C8—N1—C7—C6178.0 (2)
O3—S1—N1—C862.3 (2)S1—N1—C7—C61.5 (3)
O2—S1—N1—C867.9 (2)C1—C6—C7—O1178.7 (3)
C1—S1—N1—C8177.7 (2)C5—C6—C7—O10.4 (4)
O3—S1—C1—C6113.7 (2)C1—C6—C7—N10.2 (3)
O2—S1—C1—C6110.3 (2)C5—C6—C7—N1178.9 (2)
N1—S1—C1—C61.6 (2)C7—N1—C8—C994.9 (3)
O3—S1—C1—C267.1 (3)S1—N1—C8—C985.6 (3)
O2—S1—C1—C268.9 (3)N1—C8—C9—C10101.9 (4)
N1—S1—C1—C2179.2 (3)C8—C9—C10—C11178.7 (3)
C6—C1—C2—C30.5 (4)C9—C10—C11—C12157.8 (3)
S1—C1—C2—C3179.6 (2)C9—C10—C11—C1622.3 (5)
C1—C2—C3—C40.3 (5)C16—C11—C12—C131.6 (4)
C2—C3—C4—C50.1 (5)C10—C11—C12—C13178.4 (3)
C3—C4—C5—C60.0 (4)C11—C12—C13—C141.8 (5)
C2—C1—C6—C50.5 (4)C12—C13—C14—C150.1 (5)
S1—C1—C6—C5179.73 (19)C13—C14—C15—C161.6 (5)
C2—C1—C6—C7179.7 (2)C14—C15—C16—C111.8 (5)
S1—C1—C6—C71.1 (3)C12—C11—C16—C150.1 (4)
C4—C5—C6—C10.2 (4)C10—C11—C16—C15179.8 (3)
C4—C5—C6—C7179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.293.174 (4)158
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H13NO3S
Mr299.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.9375 (5), 7.1579 (4), 29.673 (2)
β (°) 96.160 (4)
V3)1464.99 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.11 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8250, 3606, 1722
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.178, 0.96
No. of reflections3606
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: APEX2 (Bruker, 2007), SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.93002.29003.174 (4)158.00
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for a grant for the purchase of diffractometer.

References

First citationBruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 1–9.  Web of Science CrossRef PubMed Google Scholar
First citationLiang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. E64, o724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1011
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds