metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m572-m573

[2,6-Bis(4,5-di­hydro-1H-imidazol-2-yl)pyridine]di­chloridomanganese(II)

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China, and bDepartment of Public Education, Jiangxi Vocational and Technical College of Electricity, 8 Mailu Road, Nanchang, Jiangxi Province 330032, People's Republic of China
*Correspondence e-mail: chunxiaren@sina.com

(Received 10 April 2009; accepted 17 April 2009; online 25 April 2009)

In the title compound, [MnCl2(C11H13N5)], the MnII ion is five-coordinated in a distorted square-pyramidal geometry, with three N atoms from the neutral tridentate 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine ligand and one chloride ion forming the basal plane and the other chloride ion in the apical position. Both dihydro­imidazole rings adopt envelope conformations. In the crystal structure, mol­ecules are linked into a three-dimensional network by N—H⋯Cl and C—H⋯Cl hydrogen bonds.

Related literature

For the synthesis of 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)­pyridine, see: Baker et al. (1991[Baker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem. 44, 1041-1048.]). For general background, see: Bordo et al. (2001[Bordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem. 382, 1245-1252.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For related structures, see: Böca et al. (2005[Böca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun. 8, 227-230.]); Haga et al. (1996[Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76-78.]); Hammes et al. (2005[Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513-516.]); Ren, Ye, He et al. (2004[Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200-206.]); Ren, Ye, Zhu et al. (2004[Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443-450.]); Ren et al. (2007[Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741-3747.]); Stupka et al. (2004[Stupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). J. Chem. Soc. Dalton Trans. pp. 407-412.]); Sun et al. (2008[Sun, H., Ren, C.-X., Shen, B., Liu, Z.-Q. & Ding, Y.-Q. (2008). Acta Cryst. E64, m427-m428.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C11H13N5)]

  • Mr = 341.10

  • Monoclinic, P 21 /n

  • a = 9.297 (5) Å

  • b = 12.686 (7) Å

  • c = 12.383 (6) Å

  • β = 100.313 (9)°

  • V = 1436.9 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 273 K

  • 0.30 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.774

  • 8507 measured reflections

  • 3317 independent reflections

  • 1750 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.187

  • S = 0.95

  • 3317 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N2 2.234 (4)
Mn1—N4 2.237 (4)
Mn1—N3 2.244 (4)
Mn1—Cl1 2.3759 (19)
Mn1—Cl2 2.3842 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯Cl2i 0.86 2.46 3.287 (5) 161
N1—H1⋯Cl1ii 0.86 2.50 3.261 (5) 147
C7—H7⋯Cl2i 0.93 2.78 3.681 (6) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The construction supramolecular architectures is currently of great interest owing to their intriguing network topologies and potential functions such as adsorption, ion exchange, shape-selective catalysis, non-linear and magnetic materials (Yaghi et al., 1998; Hagrman et al., 1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry (Bordo et al., 2001). We described previously a number of such metal complexes with imidazole ligands, and concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007; Sun et al., 2008). We report here the crystal structure of the title mononuclear coordination complex, [Mn(bip)Cl2], where bip is 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine.

As shown in Fig. 1, in the title compound the manganese(II) atom is five-coordinated in a distorted square-pyramidal geometry, with three N atoms from the neutral tridentate bip ligand and one Cl- ion (Cl1) forming the basal plane and the other Cl- ion (Cl2) in the apical position. The Mn1 atom deviates from the Cl1-N2-N3-N4 plane by 0.5633 (7) Å towards the Cl2 atom. The Mn—N bond lengths of 2.234 (4), 2.237 (4), 2.244 (4) Å are slightly shorter than those observed in metal-imidazole systems (Stupka et al., 2004; Hammes et al., 2005; Haga et al., 1996; Böca et al., 2005). The N—Mn—N bond angles lie in the range 70.69 (14)–140.86 (14)°.

Adjacent molecules are linked into a three-dimensional network by N—H···Cl and C—H···Cl hydrogen bonds (Table 1).

Related literature top

For the synthesis of 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine, see: Baker et al. (1991). For general background, see: Bordo et al. (2001); Hagrman et al. (1999); Yaghi et al. (1998). For related structures, see: Böca et al. (2005); Haga et al. (1996); Hammes et al. (2005); Ren, Ye, He et al. (2004); Ren, Ye, Zhu et al. (2004); Ren et al. (2007); Stupka et al. (2004); Sun et al. (2008).

Experimental top

All the reagents and solvents employed were commercially available and used as received without further purification. The ligand 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) was synthesized by literature methods (Baker et al., 1991). A solution of MnCl2.4H2O (0.2 mmol, 40 mg) in acetonitrile (10 ml) was added dropwise to a stirred solution of bip (0.4 mmol, 86 mg) in methanol (10 ml) at 333 K. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the clear filtrate for 2 d in 60% yield. Main IR bands (KBr, cm-1): 3365m, 3251 s, 1621w, 1596m, 1573 s, 1523m, 1446 s, 1275 s, 1026m, 957w, 822w, 745w, 663w.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the [Mn(bip)Cl2] complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of [Mn(bip)Cl2] viewed along the a axis. H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.
[2,6-Bis(4,5-dihydro-1H-imidazol-2-yl)pyridine]dichloridomanganese(II) top
Crystal data top
[MnCl2(C11H13N5)]F(000) = 692
Mr = 341.10Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1365 reflections
a = 9.297 (5) Åθ = 2.3–23.1°
b = 12.686 (7) ŵ = 1.28 mm1
c = 12.383 (6) ÅT = 273 K
β = 100.313 (9)°Block, yellow
V = 1436.9 (13) Å30.30 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3317 independent reflections
Radiation source: fine-focus sealed tube1750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS, Bruker, 1998)
h = 1012
Tmin = 0.700, Tmax = 0.774k = 1016
8507 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0956P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3317 reflectionsΔρmax = 0.68 e Å3
173 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
[MnCl2(C11H13N5)]V = 1436.9 (13) Å3
Mr = 341.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.297 (5) ŵ = 1.28 mm1
b = 12.686 (7) ÅT = 273 K
c = 12.383 (6) Å0.30 × 0.25 × 0.21 mm
β = 100.313 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3317 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 1998)
1750 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.774Rint = 0.077
8507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 0.95Δρmax = 0.68 e Å3
3317 reflectionsΔρmin = 0.53 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.09096 (8)0.66191 (6)0.31687 (6)0.0431 (3)
Cl11.33924 (15)0.63750 (13)0.29973 (12)0.0605 (5)
Cl20.96929 (17)0.77218 (13)0.17311 (13)0.0697 (5)
N10.9960 (5)0.8515 (3)0.5846 (4)0.0519 (12)
H10.92620.86440.61980.062*
N21.1031 (5)0.7757 (3)0.4559 (3)0.0492 (11)
N30.9235 (4)0.6172 (3)0.4186 (3)0.0360 (9)
N40.9927 (4)0.5062 (3)0.2597 (3)0.0458 (11)
N50.8274 (5)0.3790 (4)0.2646 (4)0.0542 (12)
H5A0.76470.34290.29230.065*
C11.1869 (7)0.8745 (5)0.4878 (5)0.0587 (16)
H1A1.16770.92660.42970.070*
H1B1.29110.86060.50450.070*
C21.1298 (6)0.9119 (5)0.5908 (5)0.0606 (16)
H2A1.19880.89570.65730.073*
H2B1.11030.98700.58810.073*
C31.0010 (5)0.7721 (4)0.5141 (4)0.0413 (12)
C40.8964 (5)0.6824 (4)0.4970 (4)0.0359 (11)
C50.7820 (5)0.6653 (4)0.5540 (4)0.0432 (12)
H50.76260.71260.60690.052*
C60.6986 (6)0.5756 (4)0.5292 (4)0.0510 (14)
H60.62220.56130.56620.061*
C70.7285 (5)0.5069 (4)0.4493 (4)0.0474 (13)
H70.67370.44590.43250.057*
C80.8416 (5)0.5311 (4)0.3951 (4)0.0387 (11)
C90.8875 (5)0.4711 (4)0.3049 (4)0.0388 (11)
C100.8854 (7)0.3506 (5)0.1671 (5)0.0618 (17)
H10A0.81370.36150.10080.074*
H10B0.91860.27810.17000.074*
C111.0136 (6)0.4282 (5)0.1743 (5)0.0595 (16)
H11A1.10620.39180.19500.071*
H11B1.01230.46290.10430.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0457 (5)0.0447 (5)0.0447 (5)0.0006 (4)0.0233 (4)0.0035 (4)
Cl10.0490 (8)0.0707 (10)0.0689 (9)0.0051 (7)0.0298 (7)0.0207 (8)
Cl20.0638 (10)0.0713 (11)0.0796 (11)0.0170 (8)0.0280 (8)0.0339 (9)
N10.056 (3)0.046 (3)0.061 (3)0.016 (2)0.029 (2)0.013 (2)
N20.050 (3)0.049 (3)0.054 (3)0.013 (2)0.025 (2)0.000 (2)
N30.041 (2)0.034 (2)0.035 (2)0.0027 (18)0.0134 (18)0.0013 (19)
N40.052 (3)0.044 (3)0.046 (2)0.003 (2)0.024 (2)0.002 (2)
N50.065 (3)0.045 (3)0.058 (3)0.009 (2)0.025 (2)0.010 (2)
C10.062 (4)0.048 (3)0.071 (4)0.015 (3)0.027 (3)0.001 (3)
C20.065 (4)0.054 (4)0.066 (4)0.014 (3)0.021 (3)0.011 (3)
C30.042 (3)0.044 (3)0.040 (3)0.003 (2)0.014 (2)0.002 (2)
C40.043 (3)0.032 (3)0.036 (2)0.001 (2)0.017 (2)0.004 (2)
C50.049 (3)0.045 (3)0.041 (3)0.002 (3)0.021 (2)0.001 (2)
C60.054 (3)0.050 (3)0.058 (3)0.004 (3)0.034 (3)0.004 (3)
C70.043 (3)0.048 (3)0.055 (3)0.008 (3)0.020 (3)0.000 (3)
C80.039 (3)0.037 (3)0.042 (3)0.003 (2)0.013 (2)0.004 (2)
C90.046 (3)0.032 (3)0.039 (3)0.003 (2)0.009 (2)0.004 (2)
C100.076 (4)0.056 (4)0.056 (3)0.012 (3)0.017 (3)0.012 (3)
C110.066 (4)0.064 (4)0.054 (3)0.003 (3)0.027 (3)0.012 (3)
Geometric parameters (Å, º) top
Mn1—N22.234 (4)C1—H1A0.97
Mn1—N42.237 (4)C1—H1B0.97
Mn1—N32.244 (4)C2—H2A0.97
Mn1—Cl12.3759 (19)C2—H2B0.97
Mn1—Cl22.3842 (18)C3—C41.486 (7)
N1—C31.340 (7)C4—C51.397 (6)
N1—C21.450 (7)C5—C61.380 (8)
N1—H10.86C5—H50.93
N2—C31.291 (6)C6—C71.382 (7)
N2—C11.489 (7)C6—H60.93
N3—C41.333 (6)C7—C81.380 (6)
N3—C81.333 (6)C7—H70.93
N4—C91.289 (6)C8—C91.476 (7)
N4—C111.487 (7)C10—C111.535 (9)
N5—C91.352 (7)C10—H10A0.97
N5—C101.455 (7)C10—H10B0.97
N5—H5A0.86C11—H11A0.97
C1—C21.542 (8)C11—H11B0.97
N2—Mn1—N4140.86 (14)C1—C2—H2B111.3
N2—Mn1—N371.04 (14)H2A—C2—H2B109.2
N4—Mn1—N370.69 (14)N2—C3—N1116.8 (5)
N2—Mn1—Cl1103.72 (12)N2—C3—C4118.3 (5)
N4—Mn1—Cl1101.82 (11)N1—C3—C4124.8 (4)
N3—Mn1—Cl1143.13 (12)N3—C4—C5122.1 (5)
N2—Mn1—Cl298.52 (13)N3—C4—C3112.1 (4)
N4—Mn1—Cl299.76 (12)C5—C4—C3125.8 (4)
N3—Mn1—Cl2106.47 (12)C6—C5—C4117.7 (5)
Cl1—Mn1—Cl2110.39 (6)C6—C5—H5121.2
C3—N1—C2107.6 (4)C4—C5—H5121.2
C3—N1—H1126.2C5—C6—C7120.1 (5)
C2—N1—H1126.2C5—C6—H6119.9
C3—N2—C1106.5 (4)C7—C6—H6119.9
C3—N2—Mn1117.8 (4)C8—C7—C6118.6 (5)
C1—N2—Mn1134.3 (3)C8—C7—H7120.7
C4—N3—C8119.6 (4)C6—C7—H7120.7
C4—N3—Mn1119.4 (3)N3—C8—C7121.9 (5)
C8—N3—Mn1120.7 (3)N3—C8—C9110.9 (4)
C9—N4—C11106.5 (5)C7—C8—C9127.1 (5)
C9—N4—Mn1117.8 (3)N4—C9—N5115.8 (5)
C11—N4—Mn1135.6 (3)N4—C9—C8119.6 (5)
C9—N5—C10109.2 (5)N5—C9—C8124.5 (4)
C9—N5—H5A125.4N5—C10—C11101.1 (5)
C10—N5—H5A125.4N5—C10—H10A111.6
N2—C1—C2103.7 (4)C11—C10—H10A111.6
N2—C1—H1A111.0N5—C10—H10B111.6
C2—C1—H1A111.0C11—C10—H10B111.6
N2—C1—H1B111.0H10A—C10—H10B109.4
C2—C1—H1B111.0N4—C11—C10105.6 (4)
H1A—C1—H1B109.0N4—C11—H11A110.6
N1—C2—C1102.3 (5)C10—C11—H11A110.6
N1—C2—H2A111.3N4—C11—H11B110.6
C1—C2—H2A111.3C10—C11—H11B110.6
N1—C2—H2B111.3H11A—C11—H11B108.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl2i0.862.463.287 (5)161
N1—H1···Cl1ii0.862.503.261 (5)147
C7—H7···Cl2i0.932.783.681 (6)164
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C11H13N5)]
Mr341.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)9.297 (5), 12.686 (7), 12.383 (6)
β (°) 100.313 (9)
V3)1436.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.30 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 1998)
Tmin, Tmax0.700, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
8507, 3317, 1750
Rint0.077
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.187, 0.95
No. of reflections3317
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.53

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N22.234 (4)Mn1—Cl12.3759 (19)
Mn1—N42.237 (4)Mn1—Cl22.3842 (18)
Mn1—N32.244 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl2i0.862.463.287 (5)161
N1—H1···Cl1ii0.862.503.261 (5)147
C7—H7···Cl2i0.932.783.681 (6)164
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).

References

First citationBaker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem. 44, 1041–1048.  CrossRef CAS Google Scholar
First citationBöca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun. 8, 227–230.  Google Scholar
First citationBordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem. 382, 1245–1252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl. 35, 76–78.  CrossRef CAS Web of Science Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationHammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun. 8, 513–516.  Web of Science CrossRef CAS Google Scholar
First citationRen, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). J. Chem. Soc. Dalton Trans. pp. 407–412.  CrossRef Google Scholar
First citationSun, H., Ren, C.-X., Shen, B., Liu, Z.-Q. & Ding, Y.-Q. (2008). Acta Cryst. E64, m427–m428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m572-m573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds