organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1092-o1093

(E)-3-[4-(Dec­yl­oxy)phen­yl]-1-(4-hy­droxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 15 April 2009; accepted 17 April 2009; online 22 April 2009)

In the title compound, C25H32O3, the enone group adopts an scis conformation. The alk­oxy unit is nearly planar and is in a trans conformation. The two benzene rings make a dihedral angle of 18.87 (9)°. In the crystal structure, mol­ecules are linked into chains running along the a axis by inter­molecular O—H⋯O hydrogen bonds involving the hydr­oxy and keto groups. The chains are crosslinked along the b axis via C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the ab plane.

Related literature

For the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883-889.]); Lee et al. (2006[Lee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028-1031.]). For related structures, see: Ng et al. (2006[Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.]); Razak et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009). Acta Cryst. E65, o881-o882.]); Ngaini, Fadzillah et al. (2009[Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879-o880.]); Ngaini, Rahman et al. (2009[Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889-o890.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H32O3

  • Mr = 380.51

  • Orthorhombic, P b c a

  • a = 10.5192 (3) Å

  • b = 9.9839 (3) Å

  • c = 40.8415 (12) Å

  • V = 4289.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.58 × 0.49 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.998

  • 42832 measured reflections

  • 4922 independent reflections

  • 3526 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.132

  • S = 1.10

  • 4922 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.95 (3) 1.71 (3) 2.655 (2) 177 (3)
C5—H5⋯O1ii 0.93 2.48 3.340 (2) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcone derivatives possess a wide range of biological properties such as antimalarial (Xue et al., 2004), antiangiogenic and antitumour (Lee et al., 2006), anticancer (Bhat et al., 2005) and antihyperglycemic (Satyanarayana et al., 2004) activities. Chalcones have been widely studied and developed as one of the pharmaceutically important molecules. We have synthesized the title chalcone derivative and tested and confirmed its activities against E. coli ATCC 8739. As part of our studies on chalcone derivatives, we report here the crystal structure of the title compound.

In the title molecule (Fig 1), bond lengths show normal values (Allen et al., 1987). The mean plane through the enone moiety (O2/C7/C8/C9) form dihedral angles of 19.26 (12)° and 2.14 (12)°, respectively, with the C1-C6 and C10-C15 benzene rings. The dihedral angle between the two benzene rings is 18.87 (9)°. The conformation of the enone moiety is s-cis with O2—C7—C8—C9 torsion angle being 5.4 (3)°. Slight enlargement of C5—C6—C7 (122.43 (18)°) angle is as a result of the short H5···H8 (2.18 Å) contact whereas short H8···H11 (2.30 Å) contact widened the C8—C9—C10 (128.13 (19)°) and C9—C10—C11 (123.63 (18)°) angles. Similarly, strain induced by close interatomic contact between H14 and H16A (2.27 Å) resulted in the opening of O3—C13—C14 (124.86 (17)°) angle. Related structures by Ng et al.(2006), Razak et al. (2009), Ngaini, Fadzillah et al. (2009) and Ngaini, Rahman et al. (2009) have also reported similar features.

The zigzag alkoxyl tail adopts a trans conformation with the largest deviation from the ideal value being 175.44 (17)° for C17—C18—C19—C20 torsion angle. The alkoxyl chain (O3/C16-C25) is nearly planar with the maximum deviation from the least-squares plane being 0.116 (1) Å for atom C19. The dihedral angle between the O3/C16-C25 and C10-C15 planes is 6.29 (13)°.

In the crystal structure, the molecules are arranged in alternating head-to-head zigzag layers along the c axis (Fig. 2). Intermolecular O1—H1O1···O2(x + 1/2,y,-z + 1/2) hydrogen bonds (Table 1) between hydroxy and keto groups form extended chains along the a axis. These chains are interconnected along the b axis by C5—H5···O1(-x + 2,y - 1/2,-z + 1/2) intermolecular interactions forming a two-dimensional network parallel to the ab plane.

Related literature top

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Satyanarayana et al. (2004); Lee et al. (2006). For related structures, see: Ng et al. (2006); Razak et al. (2009); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-hydroxyacetophenone (2.72 g, 20 mmol) and 4-decyloxybenzaldehyde (5.25 ml, 20 mmol) and KOH (4.04 g, 72 mmol) in methanol (60 ml) was heated at reflux for 24 h. The reaction mixture was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in a hexane-ethanol (7:1) solution, followed by few days of slow evaporation, crystals were collected.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely. C-bound H atoms were positioned geometrically and refined using a riding model with C-H = 0.93–0.97 Å. The Uiso(H) values were constrained to be 1.5Ueq(Cmethyl) and 1.2Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds.
(E)-3-[4-(Decyloxy)phenyl]-1-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C25H32O3F(000) = 1648
Mr = 380.51Dx = 1.178 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4176 reflections
a = 10.5192 (3) Åθ = 2.2–23.9°
b = 9.9839 (3) ŵ = 0.08 mm1
c = 40.8415 (12) ÅT = 100 K
V = 4289.3 (2) Å3Plate, colourless
Z = 80.58 × 0.49 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4922 independent reflections
Radiation source: sealed tube3526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
π and ω scansθmax = 27.5°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.957, Tmax = 0.998k = 1212
42832 measured reflectionsl = 5352
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0368P)2 + 2.6345P]
where P = (Fo2 + 2Fc2)/3
4922 reflections(Δ/σ)max = 0.001
258 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H32O3V = 4289.3 (2) Å3
Mr = 380.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.5192 (3) ŵ = 0.08 mm1
b = 9.9839 (3) ÅT = 100 K
c = 40.8415 (12) Å0.58 × 0.49 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3526 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.998Rint = 0.082
42832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.20 e Å3
4922 reflectionsΔρmin = 0.22 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.97999 (14)0.70636 (15)0.20018 (3)0.0232 (3)
O20.66825 (13)0.56794 (14)0.32684 (3)0.0228 (3)
O30.93786 (13)0.03516 (14)0.45190 (3)0.0227 (3)
C10.79176 (18)0.6934 (2)0.27426 (5)0.0213 (4)
H10.72420.73970.28360.026*
C20.83983 (19)0.7353 (2)0.24449 (5)0.0220 (4)
H20.80510.80960.23400.026*
C30.94058 (19)0.6659 (2)0.23015 (5)0.0198 (4)
C40.9958 (2)0.5589 (2)0.24676 (5)0.0224 (4)
H41.06550.51490.23780.027*
C50.94723 (18)0.5179 (2)0.27665 (5)0.0219 (4)
H50.98470.44630.28750.026*
C60.84262 (18)0.5826 (2)0.29070 (4)0.0193 (4)
C70.77760 (18)0.5307 (2)0.32020 (4)0.0189 (4)
C80.84031 (19)0.4306 (2)0.34137 (4)0.0206 (4)
H80.92480.40780.33770.025*
C90.77621 (19)0.3725 (2)0.36590 (4)0.0204 (4)
H90.69320.40180.36900.024*
C100.82043 (18)0.2687 (2)0.38841 (4)0.0204 (4)
C110.94097 (18)0.2090 (2)0.38649 (5)0.0216 (4)
H110.99810.23780.37060.026*
C120.97590 (19)0.1086 (2)0.40773 (5)0.0222 (5)
H121.05600.06980.40590.027*
C130.89207 (19)0.0645 (2)0.43198 (4)0.0201 (4)
C140.77209 (18)0.1205 (2)0.43435 (5)0.0213 (4)
H140.71530.09140.45030.026*
C150.73770 (19)0.2212 (2)0.41247 (4)0.0223 (4)
H150.65670.25810.41390.027*
C160.85615 (19)0.0838 (2)0.47766 (5)0.0223 (5)
H16A0.77590.11410.46860.027*
H16B0.83910.01300.49330.027*
C170.92412 (19)0.1985 (2)0.49413 (5)0.0226 (5)
H17A1.00550.16740.50230.027*
H17B0.94030.26840.47820.027*
C180.84727 (19)0.2561 (2)0.52231 (5)0.0241 (5)
H18A0.76470.28370.51420.029*
H18B0.83370.18670.53860.029*
C190.91156 (19)0.3754 (2)0.53860 (5)0.0245 (5)
H19A0.99680.34960.54510.029*
H19B0.91900.44720.52270.029*
C200.84121 (19)0.4277 (2)0.56855 (5)0.0246 (5)
H20A0.83130.35520.58420.030*
H20B0.75690.45650.56200.030*
C210.9087 (2)0.5439 (2)0.58526 (5)0.0260 (5)
H21A0.91290.61870.57010.031*
H21B0.99510.51720.59030.031*
C220.8444 (2)0.5903 (2)0.61656 (5)0.0282 (5)
H22A0.84270.51610.63190.034*
H22B0.75700.61360.61160.034*
C230.90728 (19)0.7093 (2)0.63310 (5)0.0266 (5)
H23A0.91300.78230.61750.032*
H23B0.99320.68460.63930.032*
C240.8373 (2)0.7579 (2)0.66318 (5)0.0347 (6)
H24A0.75050.77990.65720.042*
H24B0.83420.68610.67920.042*
C250.8993 (2)0.8805 (3)0.67877 (6)0.0446 (7)
H25A0.84920.90950.69710.067*
H25B0.98330.85770.68610.067*
H25C0.90430.95130.66290.067*
H1O11.046 (3)0.654 (3)0.1909 (7)0.078 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (8)0.0216 (8)0.0209 (7)0.0019 (7)0.0033 (6)0.0032 (6)
O20.0224 (7)0.0248 (8)0.0213 (7)0.0034 (7)0.0014 (6)0.0005 (6)
O30.0228 (7)0.0231 (8)0.0222 (7)0.0004 (6)0.0017 (6)0.0052 (6)
C10.0207 (10)0.0187 (11)0.0245 (10)0.0008 (9)0.0005 (8)0.0032 (9)
C20.0230 (10)0.0175 (11)0.0255 (11)0.0006 (9)0.0002 (8)0.0024 (9)
C30.0239 (10)0.0159 (11)0.0195 (10)0.0047 (9)0.0001 (8)0.0004 (8)
C40.0239 (10)0.0195 (11)0.0237 (10)0.0032 (9)0.0025 (8)0.0016 (9)
C50.0235 (10)0.0186 (11)0.0236 (10)0.0005 (9)0.0006 (8)0.0010 (9)
C60.0212 (10)0.0169 (11)0.0198 (10)0.0021 (9)0.0010 (8)0.0018 (8)
C70.0226 (10)0.0152 (10)0.0190 (10)0.0001 (9)0.0018 (8)0.0048 (8)
C80.0203 (10)0.0213 (11)0.0203 (10)0.0004 (9)0.0006 (8)0.0017 (8)
C90.0228 (10)0.0205 (11)0.0178 (10)0.0004 (9)0.0012 (8)0.0029 (8)
C100.0231 (10)0.0208 (11)0.0171 (9)0.0012 (9)0.0002 (8)0.0028 (8)
C110.0222 (10)0.0246 (12)0.0178 (10)0.0032 (9)0.0008 (8)0.0019 (9)
C120.0187 (10)0.0265 (12)0.0215 (10)0.0000 (9)0.0002 (8)0.0016 (9)
C130.0238 (10)0.0187 (11)0.0179 (9)0.0012 (9)0.0023 (8)0.0002 (8)
C140.0223 (10)0.0199 (11)0.0216 (10)0.0029 (9)0.0038 (8)0.0011 (9)
C150.0213 (10)0.0235 (12)0.0221 (10)0.0021 (9)0.0005 (8)0.0017 (9)
C160.0249 (10)0.0212 (11)0.0207 (10)0.0017 (9)0.0021 (8)0.0030 (8)
C170.0224 (10)0.0209 (11)0.0245 (10)0.0031 (9)0.0022 (8)0.0002 (9)
C180.0260 (10)0.0233 (12)0.0230 (10)0.0006 (10)0.0015 (8)0.0036 (9)
C190.0279 (11)0.0223 (12)0.0234 (10)0.0014 (10)0.0018 (9)0.0011 (9)
C200.0249 (11)0.0235 (12)0.0255 (11)0.0018 (10)0.0006 (9)0.0032 (9)
C210.0272 (11)0.0249 (12)0.0261 (11)0.0006 (10)0.0009 (9)0.0037 (9)
C220.0261 (11)0.0269 (12)0.0315 (12)0.0029 (10)0.0007 (9)0.0071 (10)
C230.0260 (11)0.0270 (12)0.0268 (11)0.0001 (10)0.0005 (9)0.0046 (9)
C240.0357 (13)0.0337 (14)0.0346 (12)0.0097 (12)0.0066 (10)0.0125 (10)
C250.0445 (15)0.0485 (17)0.0408 (14)0.0177 (13)0.0110 (12)0.0201 (13)
Geometric parameters (Å, º) top
O1—C31.354 (2)C16—C171.508 (3)
O1—H1O10.94 (3)C16—H16A0.97
O2—C71.239 (2)C16—H16B0.97
O3—C131.373 (2)C17—C181.520 (3)
O3—C161.443 (2)C17—H17A0.97
C1—C21.382 (3)C17—H17B0.97
C1—C61.400 (3)C18—C191.522 (3)
C1—H10.93C18—H18A0.97
C2—C31.395 (3)C18—H18B0.97
C2—H20.93C19—C201.522 (3)
C3—C41.392 (3)C19—H19A0.97
C4—C51.385 (3)C19—H19B0.97
C4—H40.93C20—C211.522 (3)
C5—C61.399 (3)C20—H20A0.97
C5—H50.93C20—H20B0.97
C6—C71.479 (3)C21—C221.518 (3)
C7—C81.477 (3)C21—H21A0.97
C8—C91.340 (3)C21—H21B0.97
C8—H80.93C22—C231.518 (3)
C9—C101.461 (3)C22—H22A0.97
C9—H90.93C22—H22B0.97
C10—C151.396 (3)C23—C241.513 (3)
C10—C111.403 (3)C23—H23A0.97
C11—C121.376 (3)C23—H23B0.97
C11—H110.93C24—C251.526 (3)
C12—C131.397 (3)C24—H24A0.97
C12—H120.93C24—H24B0.97
C13—C141.384 (3)C25—H25A0.96
C14—C151.393 (3)C25—H25B0.96
C14—H140.93C25—H25C0.96
C15—H150.93
C3—O1—H1O1115.1 (18)C16—C17—H17A109.2
C13—O3—C16117.84 (15)C18—C17—H17A109.2
C2—C1—C6121.44 (19)C16—C17—H17B109.2
C2—C1—H1119.3C18—C17—H17B109.2
C6—C1—H1119.3H17A—C17—H17B107.9
C1—C2—C3119.77 (19)C17—C18—C19113.01 (17)
C1—C2—H2120.1C17—C18—H18A109.0
C3—C2—H2120.1C19—C18—H18A109.0
O1—C3—C4122.77 (18)C17—C18—H18B109.0
O1—C3—C2117.63 (18)C19—C18—H18B109.0
C4—C3—C2119.60 (18)H18A—C18—H18B107.8
C5—C4—C3120.12 (19)C18—C19—C20113.81 (17)
C5—C4—H4119.9C18—C19—H19A108.8
C3—C4—H4119.9C20—C19—H19A108.8
C4—C5—C6121.03 (19)C18—C19—H19B108.8
C4—C5—H5119.5C20—C19—H19B108.8
C6—C5—H5119.5H19A—C19—H19B107.7
C5—C6—C1117.92 (18)C21—C20—C19113.30 (17)
C5—C6—C7122.43 (18)C21—C20—H20A108.9
C1—C6—C7119.38 (17)C19—C20—H20A108.9
O2—C7—C8119.34 (17)C21—C20—H20B108.9
O2—C7—C6120.14 (18)C19—C20—H20B108.9
C8—C7—C6120.48 (17)H20A—C20—H20B107.7
C9—C8—C7120.40 (18)C22—C21—C20113.74 (17)
C9—C8—H8119.8C22—C21—H21A108.8
C7—C8—H8119.8C20—C21—H21A108.8
C8—C9—C10128.13 (19)C22—C21—H21B108.8
C8—C9—H9115.9C20—C21—H21B108.8
C10—C9—H9115.9H21A—C21—H21B107.7
C15—C10—C11117.26 (18)C23—C22—C21114.78 (17)
C15—C10—C9119.05 (18)C23—C22—H22A108.6
C11—C10—C9123.63 (18)C21—C22—H22A108.6
C12—C11—C10121.05 (18)C23—C22—H22B108.6
C12—C11—H11119.5C21—C22—H22B108.6
C10—C11—H11119.5H22A—C22—H22B107.5
C11—C12—C13120.53 (19)C24—C23—C22113.59 (18)
C11—C12—H12119.7C24—C23—H23A108.8
C13—C12—H12119.7C22—C23—H23A108.8
O3—C13—C14124.86 (17)C24—C23—H23B108.8
O3—C13—C12115.28 (17)C22—C23—H23B108.8
C14—C13—C12119.86 (18)H23A—C23—H23B107.7
C13—C14—C15118.92 (18)C23—C24—C25112.84 (19)
C13—C14—H14120.5C23—C24—H24A109.0
C15—C14—H14120.5C25—C24—H24A109.0
C14—C15—C10122.36 (19)C23—C24—H24B109.0
C14—C15—H15118.8C25—C24—H24B109.0
C10—C15—H15118.8H24A—C24—H24B107.8
O3—C16—C17107.35 (15)C24—C25—H25A109.5
O3—C16—H16A110.2C24—C25—H25B109.5
C17—C16—H16A110.2H25A—C25—H25B109.5
O3—C16—H16B110.2C24—C25—H25C109.5
C17—C16—H16B110.2H25A—C25—H25C109.5
H16A—C16—H16B108.5H25B—C25—H25C109.5
C16—C17—C18111.91 (17)
C6—C1—C2—C30.5 (3)C9—C10—C11—C12177.86 (19)
C1—C2—C3—O1176.56 (18)C10—C11—C12—C130.6 (3)
C1—C2—C3—C43.1 (3)C16—O3—C13—C141.2 (3)
O1—C3—C4—C5176.75 (18)C16—O3—C13—C12179.30 (17)
C2—C3—C4—C52.9 (3)C11—C12—C13—O3179.39 (17)
C3—C4—C5—C60.1 (3)C11—C12—C13—C141.1 (3)
C4—C5—C6—C12.5 (3)O3—C13—C14—C15179.93 (18)
C4—C5—C6—C7171.60 (18)C12—C13—C14—C150.5 (3)
C2—C1—C6—C52.3 (3)C13—C14—C15—C100.7 (3)
C2—C1—C6—C7171.99 (18)C11—C10—C15—C141.2 (3)
C5—C6—C7—O2160.79 (19)C9—C10—C15—C14178.62 (19)
C1—C6—C7—O213.2 (3)C13—O3—C16—C17175.86 (16)
C5—C6—C7—C817.0 (3)O3—C16—C17—C18178.90 (16)
C1—C6—C7—C8168.94 (18)C16—C17—C18—C19177.92 (17)
O2—C7—C8—C95.4 (3)C17—C18—C19—C20175.44 (17)
C6—C7—C8—C9172.41 (18)C18—C19—C20—C21178.11 (18)
C7—C8—C9—C10177.52 (18)C19—C20—C21—C22175.79 (18)
C8—C9—C10—C15179.9 (2)C20—C21—C22—C23177.99 (18)
C8—C9—C10—C112.7 (3)C21—C22—C23—C24176.90 (19)
C15—C10—C11—C120.6 (3)C22—C23—C24—C25178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.95 (3)1.71 (3)2.655 (2)177 (3)
C5—H5···O1ii0.932.483.340 (2)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H32O3
Mr380.51
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.5192 (3), 9.9839 (3), 40.8415 (12)
V3)4289.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.58 × 0.49 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
42832, 4922, 3526
Rint0.082
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.132, 1.10
No. of reflections4922
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.95 (3)1.71 (3)2.655 (2)177 (3)
C5—H5···O1ii0.932.483.340 (2)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and IAR thank the Malaysian government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312 and for Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for Geran Penyelidikan Dana Khas Inovasi grant No. DI/01/2007(01). NIAR thanks the Malaysian government and Universiti Malaysia Sarawak for providing a scholarship for postgraduate studies.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028–1031.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009). Acta Cryst. E65, o881–o882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1092-o1093
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds