organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1022

2-Chloro-N-(3,4-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 April 2009; accepted 6 April 2009; online 10 April 2009)

The conformation of the C=O bond in the structure of the title compound, C10H12ClNO, is anti to the N—H bond and to the methyl­ene H atoms in the side chain in both the independent mol­ecules comprising the asymmetric unit. However, the conformation of the N—H bond is syn to the meta-methyl substituent in the aromatic ring of one of the mol­ecules and anti in the other mol­ecule. The two independent mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonding into chains parallel to the b axis.

Related literature

For preparation of the compound, see: Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]). For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o85.],b[Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o420.],c[Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO

  • Mr = 197.66

  • Triclinic, [P \overline 1]

  • a = 8.3672 (9) Å

  • b = 9.8076 (9) Å

  • c = 12.409 (1) Å

  • α = 95.415 (8)°

  • β = 96.492 (9)°

  • γ = 97.767 (9)°

  • V = 996.26 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 299 K

  • 0.44 × 0.36 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.868, Tmax = 0.936

  • 10754 measured reflections

  • 3634 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.127

  • S = 0.97

  • 3634 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.86 2.05 2.8992 (16) 172
N2—H2N⋯O1i 0.86 2.14 2.9802 (16) 166
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the effect of ring and side chain substitutions on the crystal structures of aromatic amides (Gowda et al., 2008a,b,c), the structure of 2-chloro-N-(3,4-dimethylphenyl)acetamide (I) has been determined. The asymmetric unit of the structure contains two molecules (Fig. 1). The conformation of the N—H bond is syn to the meta-methyl substituent in the aromatic ring of one of the molecules and anti in the other molecule. The conformation of the C=O bond in the structure is anti to the N—H bond and to the side chain methylene H-atoms in the side chain (Fig. 1), in both the independent molecules comprising the asymmetric unit, similar to that observed in in 2-chloro-N- (2,4-dimethylphenyl)acetamide (Gowda et al., 2008a), in 2-chloro-N-(3,5-dichlorophenyl)acetamide (Gowda et al., 2008b), and in 2-chloro-N-(3-methylphenyl)acetamide (Gowda et al., 2008c). The two independent molecules in (I) are linked through intermolecular N—H···O hydrogen bonding (Fig.1) and the chains formed by H-bonding are parallel to the b axis (Table 1, Fig. 2).

Related literature top

For preparation of the compound, see: Shilpa & Gowda (2007). For background literature, see: Gowda et al. (2008a,b,c).

Experimental top

Compound (I) was prepared according to the literature method (Shilpa & Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution of (I).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2-Chloro-N-(3,4-dimethylphenyl)acetamide top
Crystal data top
C10H12ClNOZ = 4
Mr = 197.66F(000) = 416
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3672 (9) ÅCell parameters from 4345 reflections
b = 9.8076 (9) Åθ = 2.8–27.6°
c = 12.409 (1) ŵ = 0.34 mm1
α = 95.415 (8)°T = 299 K
β = 96.492 (9)°Rod, colourless
γ = 97.767 (9)°0.44 × 0.36 × 0.20 mm
V = 996.26 (16) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3634 independent reflections
Radiation source: fine-focus sealed tube2874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1010
Tmin = 0.868, Tmax = 0.936k = 1111
10754 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3634 reflectionsΔρmax = 0.19 e Å3
240 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (4)
Crystal data top
C10H12ClNOγ = 97.767 (9)°
Mr = 197.66V = 996.26 (16) Å3
Triclinic, P1Z = 4
a = 8.3672 (9) ÅMo Kα radiation
b = 9.8076 (9) ŵ = 0.34 mm1
c = 12.409 (1) ÅT = 299 K
α = 95.415 (8)°0.44 × 0.36 × 0.20 mm
β = 96.492 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3634 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2874 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.936Rint = 0.017
10754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.97Δρmax = 0.19 e Å3
3634 reflectionsΔρmin = 0.23 e Å3
240 parameters
Special details top

Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, CrysAlis RED (Oxford Diffraction, 2007).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62739 (6)0.60024 (5)0.62240 (4)0.0701 (2)
O10.83974 (16)0.76355 (11)0.45971 (10)0.0569 (3)
N10.81699 (17)0.54085 (13)0.38380 (11)0.0477 (3)
H1N0.81130.45700.39980.057*
C10.81633 (19)0.55916 (15)0.27115 (14)0.0447 (4)
C20.9174 (2)0.66380 (16)0.23435 (14)0.0482 (4)
H20.98750.72720.28460.058*
C30.9155 (2)0.67553 (17)0.12342 (14)0.0490 (4)
C40.8120 (2)0.57967 (18)0.04769 (14)0.0542 (4)
C50.7129 (2)0.47505 (18)0.08636 (16)0.0627 (5)
H50.64340.41050.03670.075*
C60.7148 (2)0.46423 (17)0.19551 (16)0.0575 (5)
H60.64740.39260.21900.069*
C70.82545 (19)0.63949 (16)0.46785 (14)0.0446 (4)
C80.8184 (2)0.58415 (19)0.57750 (14)0.0546 (4)
H8A0.90490.63560.63040.066*
H8B0.83390.48760.57100.066*
C91.0278 (3)0.7913 (2)0.08682 (19)0.0753 (6)
H9A1.09070.84580.14950.090*
H9B0.96460.84880.04660.090*
H9C1.09950.75280.04110.090*
C100.8062 (3)0.5877 (3)0.07390 (16)0.0781 (6)
H10A0.91260.58380.09490.094*
H10B0.77100.67310.09130.094*
H10C0.73140.51120.11260.094*
Cl20.90424 (8)0.14166 (5)0.21372 (4)0.0779 (2)
O20.78329 (17)0.24929 (11)0.41405 (11)0.0628 (4)
N20.74319 (15)0.04521 (12)0.48565 (10)0.0414 (3)
H2N0.75390.04060.47340.050*
C110.67313 (18)0.08227 (14)0.58097 (12)0.0379 (3)
C120.66625 (19)0.01217 (15)0.65716 (12)0.0428 (4)
H120.70760.09460.64350.051*
C130.5996 (2)0.01258 (16)0.75308 (13)0.0458 (4)
C140.53726 (19)0.13642 (16)0.77369 (13)0.0459 (4)
C150.5432 (2)0.22884 (16)0.69622 (14)0.0503 (4)
H150.50110.31100.70920.060*
C160.60886 (19)0.20418 (15)0.60076 (14)0.0466 (4)
H160.61020.26830.55010.056*
C170.79504 (19)0.12730 (15)0.41182 (13)0.0425 (4)
C180.8760 (2)0.05019 (18)0.32656 (13)0.0519 (4)
H18A0.80970.03860.30180.062*
H18B0.98080.03260.35980.062*
C190.5979 (3)0.0922 (2)0.83395 (16)0.0698 (6)
H19A0.66090.05130.90160.084*
H19B0.64390.17070.80580.084*
H19C0.48790.12160.84620.084*
C200.4663 (2)0.1688 (2)0.87824 (15)0.0639 (5)
H20A0.54680.16730.93960.077*
H20B0.37360.10080.88190.077*
H20C0.43330.25890.87970.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0802 (4)0.0660 (3)0.0721 (3)0.0167 (3)0.0302 (3)0.0161 (2)
O10.0811 (9)0.0320 (6)0.0606 (7)0.0144 (5)0.0136 (6)0.0069 (5)
N10.0598 (9)0.0290 (6)0.0568 (8)0.0085 (6)0.0128 (7)0.0085 (6)
C10.0469 (9)0.0323 (7)0.0568 (9)0.0115 (7)0.0090 (7)0.0041 (7)
C20.0470 (9)0.0380 (8)0.0578 (10)0.0046 (7)0.0043 (8)0.0017 (7)
C30.0500 (10)0.0447 (9)0.0559 (10)0.0142 (7)0.0101 (8)0.0097 (7)
C40.0570 (10)0.0513 (10)0.0570 (10)0.0243 (8)0.0029 (8)0.0020 (8)
C50.0653 (12)0.0478 (10)0.0682 (12)0.0054 (9)0.0037 (10)0.0101 (8)
C60.0618 (11)0.0374 (8)0.0703 (12)0.0011 (8)0.0095 (9)0.0023 (8)
C70.0437 (9)0.0356 (8)0.0567 (9)0.0099 (7)0.0073 (7)0.0093 (7)
C80.0596 (11)0.0477 (9)0.0584 (10)0.0104 (8)0.0066 (8)0.0126 (8)
C90.0797 (14)0.0735 (14)0.0735 (13)0.0002 (11)0.0189 (11)0.0176 (11)
C100.0970 (17)0.0832 (15)0.0568 (12)0.0346 (13)0.0021 (11)0.0040 (10)
Cl20.1111 (5)0.0687 (3)0.0604 (3)0.0094 (3)0.0316 (3)0.0223 (2)
O20.0880 (10)0.0318 (6)0.0763 (8)0.0136 (6)0.0275 (7)0.0190 (6)
N20.0518 (8)0.0259 (6)0.0483 (7)0.0061 (5)0.0106 (6)0.0073 (5)
C110.0379 (8)0.0299 (7)0.0447 (8)0.0025 (6)0.0036 (6)0.0037 (6)
C120.0499 (9)0.0299 (7)0.0508 (9)0.0097 (6)0.0084 (7)0.0073 (6)
C130.0516 (9)0.0404 (8)0.0446 (8)0.0056 (7)0.0048 (7)0.0046 (7)
C140.0440 (9)0.0428 (8)0.0485 (9)0.0040 (7)0.0046 (7)0.0027 (7)
C150.0528 (10)0.0358 (8)0.0636 (10)0.0134 (7)0.0093 (8)0.0003 (7)
C160.0519 (9)0.0322 (7)0.0581 (10)0.0102 (7)0.0080 (8)0.0101 (7)
C170.0458 (9)0.0334 (8)0.0480 (9)0.0021 (6)0.0059 (7)0.0091 (6)
C180.0618 (11)0.0465 (9)0.0510 (9)0.0088 (8)0.0151 (8)0.0134 (7)
C190.0980 (16)0.0619 (11)0.0592 (11)0.0223 (11)0.0262 (11)0.0215 (9)
C200.0684 (12)0.0652 (12)0.0567 (11)0.0089 (10)0.0157 (9)0.0078 (9)
Geometric parameters (Å, º) top
Cl1—C81.7731 (19)Cl2—C181.7539 (16)
O1—C71.2213 (18)O2—C171.2117 (18)
N1—C71.343 (2)N2—C171.3454 (19)
N1—C11.426 (2)N2—C111.4171 (19)
N1—H1N0.8600N2—H2N0.8600
C1—C61.382 (2)C11—C121.385 (2)
C1—C21.385 (2)C11—C161.388 (2)
C2—C31.391 (2)C12—C131.385 (2)
C2—H20.9300C12—H120.9300
C3—C41.395 (2)C13—C141.398 (2)
C3—C91.511 (3)C13—C191.503 (2)
C4—C51.387 (3)C14—C151.383 (2)
C4—C101.514 (3)C14—C201.511 (2)
C5—C61.367 (3)C15—C161.376 (2)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—H160.9300
C7—C81.516 (2)C17—C181.517 (2)
C8—H8A0.9700C18—H18A0.9700
C8—H8B0.9700C18—H18B0.9700
C9—H9A0.9600C19—H19A0.9600
C9—H9B0.9600C19—H19B0.9600
C9—H9C0.9600C19—H19C0.9600
C10—H10A0.9600C20—H20A0.9600
C10—H10B0.9600C20—H20B0.9600
C10—H10C0.9600C20—H20C0.9600
C7—N1—C1127.45 (13)C17—N2—C11128.24 (12)
C7—N1—H1N116.3C17—N2—H2N115.9
C1—N1—H1N116.3C11—N2—H2N115.9
C6—C1—C2118.88 (16)C12—C11—C16118.87 (14)
C6—C1—N1118.09 (15)C12—C11—N2116.84 (13)
C2—C1—N1122.98 (14)C16—C11—N2124.27 (13)
C1—C2—C3120.99 (15)C11—C12—C13121.92 (14)
C1—C2—H2119.5C11—C12—H12119.0
C3—C2—H2119.5C13—C12—H12119.0
C2—C3—C4119.72 (16)C12—C13—C14119.13 (15)
C2—C3—C9119.26 (16)C12—C13—C19119.77 (15)
C4—C3—C9121.02 (17)C14—C13—C19121.09 (16)
C5—C4—C3118.29 (16)C15—C14—C13118.25 (15)
C5—C4—C10120.04 (17)C15—C14—C20120.87 (16)
C3—C4—C10121.68 (18)C13—C14—C20120.88 (16)
C6—C5—C4121.78 (16)C16—C15—C14122.68 (15)
C6—C5—H5119.1C16—C15—H15118.7
C4—C5—H5119.1C14—C15—H15118.7
C5—C6—C1120.34 (17)C15—C16—C11119.14 (14)
C5—C6—H6119.8C15—C16—H16120.4
C1—C6—H6119.8C11—C16—H16120.4
O1—C7—N1124.51 (15)O2—C17—N2124.59 (15)
O1—C7—C8121.48 (15)O2—C17—C18123.45 (14)
N1—C7—C8114.00 (14)N2—C17—C18111.93 (13)
C7—C8—Cl1109.74 (12)C17—C18—Cl2112.79 (12)
C7—C8—H8A109.7C17—C18—H18A109.0
Cl1—C8—H8A109.7Cl2—C18—H18A109.0
C7—C8—H8B109.7C17—C18—H18B109.0
Cl1—C8—H8B109.7Cl2—C18—H18B109.0
H8A—C8—H8B108.2H18A—C18—H18B107.8
C3—C9—H9A109.5C13—C19—H19A109.5
C3—C9—H9B109.5C13—C19—H19B109.5
H9A—C9—H9B109.5H19A—C19—H19B109.5
C3—C9—H9C109.5C13—C19—H19C109.5
H9A—C9—H9C109.5H19A—C19—H19C109.5
H9B—C9—H9C109.5H19B—C19—H19C109.5
C4—C10—H10A109.5C14—C20—H20A109.5
C4—C10—H10B109.5C14—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C4—C10—H10C109.5C14—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
C7—N1—C1—C6140.52 (16)C17—N2—C11—C12164.70 (14)
C7—N1—C1—C242.3 (2)C17—N2—C11—C1616.8 (2)
C6—C1—C2—C31.1 (2)C16—C11—C12—C131.1 (2)
N1—C1—C2—C3178.30 (14)N2—C11—C12—C13179.64 (14)
C1—C2—C3—C40.8 (2)C11—C12—C13—C140.1 (2)
C1—C2—C3—C9180.00 (16)C11—C12—C13—C19178.89 (16)
C2—C3—C4—C50.2 (2)C12—C13—C14—C150.7 (2)
C9—C3—C4—C5179.41 (17)C19—C13—C14—C15179.67 (16)
C2—C3—C4—C10179.69 (17)C12—C13—C14—C20178.87 (15)
C9—C3—C4—C100.5 (3)C19—C13—C14—C200.1 (3)
C3—C4—C5—C60.0 (3)C13—C14—C15—C160.5 (3)
C10—C4—C5—C6179.91 (18)C20—C14—C15—C16179.05 (16)
C4—C5—C6—C10.4 (3)C14—C15—C16—C110.5 (3)
C2—C1—C6—C50.9 (3)C12—C11—C16—C151.2 (2)
N1—C1—C6—C5178.21 (16)N2—C11—C16—C15179.71 (14)
C1—N1—C7—O12.7 (3)C11—N2—C17—O23.0 (3)
C1—N1—C7—C8178.29 (15)C11—N2—C17—C18175.03 (14)
O1—C7—C8—Cl173.33 (19)O2—C17—C18—Cl215.1 (2)
N1—C7—C8—Cl1107.59 (15)N2—C17—C18—Cl2166.82 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.052.8992 (16)172
N2—H2N···O1i0.862.142.9802 (16)166
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H12ClNO
Mr197.66
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.3672 (9), 9.8076 (9), 12.409 (1)
α, β, γ (°)95.415 (8), 96.492 (9), 97.767 (9)
V3)996.26 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.44 × 0.36 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.868, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
10754, 3634, 2874
Rint0.017
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.127, 0.97
No. of reflections3634
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.052.8992 (16)171.5
N2—H2N···O1i0.862.142.9802 (16)166.2
Symmetry code: (i) x, y1, z.
 

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1022
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds