metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bipyrid­yl)-1κ2N,N′;3κ2N,N′-bis­­(4-bromo-2-formyl­phenolato)-1κ2O,O′;3κ2O,O′-bis­­[μ-2-(5-bromo-2-oxido­benzyl­idene­amino)­ethane­sul­fon­ato]-1:2κ3O:N,O2;2:3κ3N,O2:O-tricopper(II) monohydrate

aDepartment of Chemistry, Lishui University, 323000 Lishui, Zhejiang, People's Republic of China
*Correspondence e-mail: zhangling2005@126.com

(Received 11 April 2009; accepted 16 April 2009; online 22 April 2009)

The title complex, [Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O, lies on an inversion center located on the central Cu atom, which is four-coordinated in a square-planar geometry, whereas the outer Cu atoms related by symmetry are five-coordinated in a square-pyramidal geometry. The trinuclear mol­ecules, with an intramolecular Cu⋯Cu separation of 6.313 (3) Å, are linked to each other, forming a chain through O—H⋯O and O—H⋯Br hydrogen bonds involving the half-occupied water mol­ecule. Futhermore, weak C—H⋯O inter­actions link the chains to form a supra­molecular network.

Related literature

For general background on coordination polymers and open framework materials, see: Kim et al. (2003[Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 474-477.]); Iglesias et al. (2003[Iglesias, S., Castillo, O., Luque, A. & Romaan, P. (2003). Inorg. Chim. Acta, 349, 273-278.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For background on 2,2′-bipyridyl and 5-bromo-2-hydroxy­benzaldehyde, see: Sun & Gao (2005[Sun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354-m355.]); Murphy et al. (2004[Murphy, B., Roberts, G., Tyagi, S. & Hathaway, B. J. (2004). J. Mol. Struct. 698, 25-36.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O

  • Mr = 1533.30

  • Triclinic, [P \overline 1]

  • a = 10.031 (2) Å

  • b = 11.480 (2) Å

  • c = 12.913 (3) Å

  • α = 73.13 (3)°

  • β = 78.58 (3)°

  • γ = 75.24 (3)°

  • V = 1363.6 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.24 mm−1

  • T = 293 K

  • 0.23 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.442, Tmax = 0.677

  • 12051 measured reflections

  • 4888 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.099

  • S = 0.76

  • 4888 reflections

  • 367 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.84 2.40 3.197 (11) 159
O1W—H1WA⋯Br2i 0.83 2.55 3.145 (9) 130
C4—H4⋯O1ii 0.93 2.42 3.316 (9) 163
C23—H23⋯O2iii 0.93 2.54 3.324 (9) 142
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+2, -z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Kim et al., 2003; Iglesias et al., 2003; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metals ions and bridging building blocks as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. 2,2'-bipyridyl, 5-bromo-2-hydroxybenzaldehyde are excellent candidates for the construction of supramolecula complexes, since they not only have multiple coordination modes but also can form regular hydrogen bonds by functioning as both hydrogen-bond donor and acceptor (Sun & Gao, 2005; Murphy et al., 2004). 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic has a versatile binding ability, whose structure of complexes have not been reported to date. Recently, we obtained the title novel trinuclear copper complex (I) by the reaction of copper nitryl, 2,2'-bipyridyl, 5-bromo-2-hydroxybenzaldehyde and 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic in an aqueous solution, and its crystal is reported here.

The trinuclear complex lyies on a crystallographic inversion center located on the central Cu1 atom which is four-coordinated in a square planar geometry, whereas the other Cu2 atoms related by symmetry are five-coordinated in a square pyramidal geometry (Fig. 1). The compound forms trinuclear structure via the flexible 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic ligand, with a Cu···Cu separation of 6.313 (3) Å. These trinuclear units are linked to each other to form a chain through O-H···O and O-H···Br hydrogen bonds involving the water molecule (table 1, Fig. 2). Futhermore, weak C-H···O interactions link the chain to form a supramolecular network.

Related literature top

For general background on coordination polymers and open framework materials, see: Kim et al. (2003); Iglesias et al. (2003); Moulton & Zaworotko (2001). For background on 2,2'-bipyridyl and 5-bromo-2-hydroxybenzaldehyde, see: Sun & Gao (2005); Murphy et al. (2004).

Experimental top

A mixture of copper chloride(1 mmol), 5-bromo-2-hydroxybenzaldehyde (1 mmol), 2,2'-bipyridyl(1 mmol), 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic (1 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the trinuclear complex with the atom labeling scheme, Displacement ellipsoids are shown at the 30% probability level. H atom and water molecule have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. Partial packing view showing the H bond interactions linking the trinuclear unit through the water molecule. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry codes: (ii) -x, -y+1, -z+2]
Bis(2,2'-bipyridyl)-1κ2N,N';3κ2N,N'- bis(4-bromo-2-formylphenolato)- 1κ2O,O';3κ2O,O'- bis[µ-2-(5-bromo-2-oxidobenzylideneamino)ethanesulfonato]- 1:2κ3O:N,O2;2:3κ3N,O2:O- tricopper(II) monohydrate top
Crystal data top
[Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2OZ = 1
Mr = 1533.30F(000) = 759
Triclinic, P1Dx = 1.867 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.031 (2) ÅCell parameters from 2895 reflections
b = 11.480 (2) Åθ = 2.4–27.9°
c = 12.913 (3) ŵ = 4.24 mm1
α = 73.13 (3)°T = 293 K
β = 78.58 (3)°Block, colorless
γ = 75.24 (3)°0.23 × 0.16 × 0.10 mm
V = 1363.6 (6) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4888 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.442, Tmax = 0.677k = 1313
12051 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
4888 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2Oγ = 75.24 (3)°
Mr = 1533.30V = 1363.6 (6) Å3
Triclinic, P1Z = 1
a = 10.031 (2) ÅMo Kα radiation
b = 11.480 (2) ŵ = 4.24 mm1
c = 12.913 (3) ÅT = 293 K
α = 73.13 (3)°0.23 × 0.16 × 0.10 mm
β = 78.58 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
4888 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1651 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.677Rint = 0.077
12051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.76Δρmax = 0.43 e Å3
4888 reflectionsΔρmin = 0.39 e Å3
367 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.0567 (4)
Cu20.16643 (9)1.01005 (8)0.23932 (7)0.0545 (3)
Br10.56422 (9)0.78255 (8)0.70805 (6)0.0780 (3)
Br20.20594 (10)0.35954 (9)1.08489 (7)0.0900 (4)
S10.0325 (2)0.7374 (2)0.34555 (18)0.0589 (6)
N10.2317 (7)0.9972 (6)0.0858 (5)0.0490 (16)
N20.0114 (6)1.1303 (5)0.1664 (6)0.0499 (17)
N30.3009 (6)0.5065 (5)0.5526 (5)0.0539 (18)
O10.0575 (6)0.6616 (5)0.2703 (4)0.100 (2)
O20.0917 (5)0.7223 (5)0.4217 (4)0.0901 (18)
O30.0319 (5)0.8680 (4)0.2953 (4)0.0853 (18)
O40.5413 (5)0.4760 (5)0.6422 (4)0.0695 (16)
O50.1069 (5)1.0634 (4)0.3756 (4)0.0677 (16)
O60.3395 (4)0.9154 (4)0.2812 (3)0.0529 (13)
C10.0981 (10)1.1957 (8)0.2182 (6)0.066 (2)
H10.10401.18610.29290.079*
C20.2050 (8)1.2792 (7)0.1604 (8)0.070 (2)
H20.28221.32300.19650.084*
C30.1923 (10)1.2938 (8)0.0521 (8)0.078 (3)
H30.26161.34880.01310.094*
C40.0822 (9)1.2309 (8)0.0011 (7)0.066 (3)
H40.07501.24290.07620.080*
C50.0231 (9)1.1459 (7)0.0577 (8)0.056 (2)
C60.1483 (9)1.0735 (7)0.0102 (7)0.054 (2)
C70.1860 (10)1.0791 (7)0.0994 (7)0.070 (3)
H70.12941.13120.15070.083*
C80.3088 (11)1.0058 (9)0.1304 (7)0.074 (3)
H80.33631.00890.20410.089*
C90.3919 (9)0.9284 (7)0.0566 (8)0.074 (3)
H90.47500.87770.07810.089*
C100.3483 (9)0.9282 (7)0.0509 (7)0.059 (2)
H100.40470.87600.10230.071*
C110.3250 (10)0.4410 (6)0.7469 (6)0.059 (2)
C120.2482 (8)0.4121 (6)0.8509 (6)0.059 (2)
H120.15540.40790.85780.071*
C130.3108 (9)0.3899 (6)0.9436 (5)0.058 (2)
C140.4491 (9)0.3968 (7)0.9313 (7)0.069 (2)
H140.49030.38120.99390.083*
C150.5277 (8)0.4253 (6)0.8325 (7)0.061 (2)
H150.62010.42960.82760.073*
C160.4641 (9)0.4487 (7)0.7348 (7)0.056 (2)
C170.2491 (7)0.4750 (5)0.6544 (6)0.048 (2)
H170.15470.47410.66940.057*
C180.1956 (7)0.5436 (6)0.4753 (5)0.056 (2)
H18A0.10900.52120.51430.067*
H18B0.22840.49910.41860.067*
C190.1708 (7)0.6813 (6)0.4242 (5)0.058 (2)
H19A0.25510.70100.37810.070*
H19B0.15170.72450.48160.070*
C200.3051 (8)0.9405 (7)0.4636 (6)0.0427 (19)
C210.3588 (8)0.9097 (6)0.5629 (6)0.052 (2)
H210.30790.94150.62080.062*
C220.4862 (9)0.8328 (7)0.5734 (6)0.053 (2)
C230.5646 (8)0.7859 (6)0.4863 (7)0.058 (2)
H230.65180.73430.49510.069*
C240.5151 (8)0.8146 (6)0.3881 (5)0.051 (2)
H240.56830.78290.33090.061*
C250.3833 (8)0.8923 (6)0.3751 (7)0.0455 (19)
C260.1759 (9)1.0241 (7)0.4569 (6)0.067 (2)
H260.13611.05410.51810.080*
O1W0.0713 (9)0.6212 (10)0.6775 (8)0.101 (4)0.50
H1WA0.14520.64810.71250.152*0.50
H1WB0.05870.65690.61090.152*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0656 (10)0.0561 (9)0.0502 (9)0.0107 (8)0.0282 (8)0.0044 (7)
Cu20.0598 (7)0.0578 (7)0.0444 (6)0.0086 (5)0.0168 (5)0.0072 (5)
Br10.0910 (7)0.0913 (7)0.0530 (6)0.0181 (6)0.0290 (5)0.0083 (5)
Br20.1119 (8)0.1085 (8)0.0554 (6)0.0490 (7)0.0213 (6)0.0006 (5)
S10.0574 (16)0.0591 (17)0.0571 (15)0.0124 (13)0.0245 (13)0.0013 (13)
N10.057 (5)0.045 (4)0.049 (4)0.012 (4)0.015 (4)0.012 (4)
N20.045 (5)0.050 (5)0.057 (5)0.010 (4)0.012 (4)0.014 (4)
N30.074 (5)0.052 (4)0.037 (4)0.019 (4)0.028 (4)0.005 (3)
O10.132 (5)0.107 (5)0.067 (4)0.007 (4)0.059 (4)0.029 (4)
O20.059 (4)0.080 (4)0.116 (5)0.014 (3)0.006 (4)0.005 (4)
O30.083 (4)0.060 (4)0.102 (4)0.023 (3)0.058 (3)0.033 (3)
O40.061 (4)0.094 (4)0.055 (4)0.011 (3)0.022 (3)0.018 (3)
O50.068 (4)0.086 (4)0.045 (3)0.003 (3)0.016 (3)0.021 (3)
O60.061 (3)0.059 (3)0.044 (3)0.011 (3)0.019 (3)0.013 (3)
C10.077 (7)0.069 (7)0.054 (6)0.028 (6)0.016 (6)0.004 (5)
C20.063 (6)0.057 (6)0.090 (7)0.014 (5)0.024 (6)0.010 (6)
C30.070 (7)0.075 (7)0.085 (8)0.008 (6)0.041 (6)0.013 (6)
C40.060 (6)0.089 (7)0.058 (6)0.016 (6)0.026 (6)0.016 (6)
C50.060 (7)0.048 (6)0.064 (7)0.020 (5)0.025 (6)0.004 (5)
C60.064 (7)0.043 (6)0.057 (6)0.015 (5)0.017 (6)0.006 (5)
C70.103 (8)0.062 (7)0.040 (6)0.016 (6)0.017 (6)0.003 (5)
C80.109 (9)0.076 (7)0.043 (6)0.032 (6)0.007 (6)0.025 (6)
C90.083 (7)0.068 (7)0.067 (7)0.007 (5)0.013 (6)0.016 (6)
C100.052 (6)0.066 (6)0.054 (6)0.004 (5)0.013 (5)0.009 (5)
C110.085 (7)0.058 (6)0.035 (5)0.014 (5)0.022 (5)0.005 (4)
C120.075 (6)0.047 (5)0.061 (6)0.014 (5)0.022 (5)0.013 (5)
C130.093 (7)0.048 (5)0.032 (5)0.021 (5)0.015 (5)0.001 (4)
C140.061 (6)0.086 (7)0.064 (6)0.016 (5)0.024 (5)0.014 (5)
C150.062 (6)0.063 (6)0.063 (6)0.013 (5)0.025 (5)0.012 (5)
C160.063 (7)0.047 (6)0.060 (7)0.001 (5)0.027 (6)0.011 (5)
C170.051 (5)0.027 (5)0.068 (6)0.002 (4)0.033 (5)0.004 (4)
C180.065 (5)0.048 (5)0.062 (5)0.018 (4)0.040 (4)0.001 (4)
C190.061 (6)0.051 (5)0.056 (5)0.007 (4)0.031 (4)0.008 (4)
C200.037 (5)0.041 (5)0.052 (6)0.002 (4)0.011 (5)0.021 (4)
C210.052 (6)0.051 (6)0.054 (6)0.016 (5)0.001 (5)0.019 (4)
C220.057 (6)0.059 (6)0.047 (5)0.013 (5)0.019 (5)0.011 (4)
C230.049 (6)0.047 (5)0.074 (6)0.004 (4)0.017 (5)0.017 (5)
C240.062 (6)0.050 (5)0.044 (5)0.010 (5)0.018 (5)0.014 (4)
C250.046 (6)0.035 (5)0.055 (6)0.004 (4)0.014 (5)0.009 (4)
C260.085 (7)0.069 (6)0.046 (6)0.014 (6)0.003 (5)0.025 (5)
O1W0.071 (8)0.148 (11)0.085 (8)0.006 (7)0.019 (7)0.076 (8)
Geometric parameters (Å, º) top
Cu1—O41.889 (5)C7—H70.9300
Cu1—O4i1.889 (5)C8—C91.356 (9)
Cu1—N31.967 (6)C8—H80.9300
Cu1—N3i1.967 (6)C9—C101.370 (9)
Cu2—O61.886 (4)C9—H90.9300
Cu2—O51.963 (5)C10—H100.9300
Cu2—N21.986 (6)C11—C161.395 (10)
Cu2—N11.996 (6)C11—C121.403 (9)
Cu2—O32.249 (5)C11—C171.449 (8)
Br1—C221.922 (7)C12—C131.389 (8)
Br2—C131.901 (7)C12—H120.9300
S1—O11.431 (5)C13—C141.385 (9)
S1—O21.441 (5)C14—C151.359 (9)
S1—O31.449 (4)C14—H140.9300
S1—C191.758 (6)C15—C161.450 (9)
N1—C101.314 (8)C15—H150.9300
N1—C61.369 (8)C17—H170.9300
N2—C11.341 (8)C18—C191.502 (7)
N2—C51.348 (8)C18—H18A0.9700
N3—C171.296 (7)C18—H18B0.9700
N3—C181.495 (7)C19—H19A0.9700
O4—C161.292 (8)C19—H19B0.9700
O5—C261.280 (7)C20—C261.404 (9)
O6—C251.303 (7)C20—C211.404 (8)
C1—C21.415 (9)C20—C251.421 (9)
C1—H10.9300C21—C221.362 (8)
C2—C31.343 (9)C21—H210.9300
C2—H20.9300C22—C231.400 (9)
C3—C41.339 (9)C23—C241.373 (8)
C3—H30.9300C23—H230.9300
C4—C51.416 (9)C24—C251.405 (8)
C4—H40.9300C24—H240.9300
C5—C61.449 (10)C26—H260.9300
C6—C71.379 (9)O1W—H1WA0.8251
C7—C81.363 (9)O1W—H1WB0.8381
O4—Cu1—O4i180.000 (1)C8—C9—H9121.4
O4—Cu1—N392.1 (2)C10—C9—H9121.4
O4i—Cu1—N387.9 (2)N1—C10—C9124.0 (8)
O4—Cu1—N3i87.9 (2)N1—C10—H10118.0
O4i—Cu1—N3i92.1 (2)C9—C10—H10118.0
N3—Cu1—N3i180.0 (3)C16—C11—C12120.9 (7)
O6—Cu2—O593.61 (19)C16—C11—C17122.1 (7)
O6—Cu2—N2166.7 (2)C12—C11—C17116.7 (8)
O5—Cu2—N293.4 (3)C13—C12—C11120.0 (7)
O6—Cu2—N190.5 (2)C13—C12—H12120.0
O5—Cu2—N1166.5 (2)C11—C12—H12120.0
N2—Cu2—N180.3 (3)C14—C13—C12119.0 (7)
O6—Cu2—O3102.37 (17)C14—C13—Br2120.3 (6)
O5—Cu2—O391.9 (2)C12—C13—Br2120.7 (7)
N2—Cu2—O388.68 (19)C15—C14—C13123.3 (7)
N1—Cu2—O399.8 (2)C15—C14—H14118.4
O1—S1—O2111.7 (4)C13—C14—H14118.4
O1—S1—O3114.7 (3)C14—C15—C16118.5 (7)
O2—S1—O3110.9 (3)C14—C15—H15120.7
O1—S1—C19106.6 (3)C16—C15—H15120.7
O2—S1—C19105.8 (3)O4—C16—C11124.6 (7)
O3—S1—C19106.4 (3)O4—C16—C15117.0 (8)
C10—N1—C6118.0 (7)C11—C16—C15118.3 (8)
C10—N1—Cu2126.4 (6)N3—C17—C11125.8 (7)
C6—N1—Cu2115.5 (6)N3—C17—H17117.1
C1—N2—C5120.3 (7)C11—C17—H17117.1
C1—N2—Cu2124.1 (6)N3—C18—C19110.6 (5)
C5—N2—Cu2115.6 (6)N3—C18—H18A109.5
C17—N3—C18113.8 (6)C19—C18—H18A109.5
C17—N3—Cu1124.5 (5)N3—C18—H18B109.5
C18—N3—Cu1121.6 (4)C19—C18—H18B109.5
S1—O3—Cu2143.6 (3)H18A—C18—H18B108.1
C16—O4—Cu1129.1 (5)C18—C19—S1114.0 (4)
C26—O5—Cu2124.1 (5)C18—C19—H19A108.7
C25—O6—Cu2127.8 (5)S1—C19—H19A108.7
N2—C1—C2120.6 (8)C18—C19—H19B108.7
N2—C1—H1119.7S1—C19—H19B108.7
C2—C1—H1119.7H19A—C19—H19B107.6
C3—C2—C1118.5 (9)C26—C20—C21116.3 (8)
C3—C2—H2120.7C26—C20—C25123.4 (7)
C1—C2—H2120.7C21—C20—C25120.3 (7)
C4—C3—C2121.5 (9)C22—C21—C20119.2 (7)
C4—C3—H3119.3C22—C21—H21120.4
C2—C3—H3119.3C20—C21—H21120.4
C3—C4—C5119.7 (8)C21—C22—C23120.9 (7)
C3—C4—H4120.1C21—C22—Br1121.7 (6)
C5—C4—H4120.1C23—C22—Br1117.4 (7)
N2—C5—C4119.3 (8)C24—C23—C22121.2 (7)
N2—C5—C6115.3 (8)C24—C23—H23119.4
C4—C5—C6125.3 (9)C22—C23—H23119.4
N1—C6—C7121.1 (8)C23—C24—C25119.3 (7)
N1—C6—C5113.3 (8)C23—C24—H24120.3
C7—C6—C5125.6 (9)C25—C24—H24120.3
C8—C7—C6117.9 (8)O6—C25—C24117.2 (7)
C8—C7—H7121.0O6—C25—C20123.7 (7)
C6—C7—H7121.0C24—C25—C20119.1 (7)
C9—C8—C7121.8 (9)O5—C26—C20127.0 (7)
C9—C8—H8119.1O5—C26—H26116.5
C7—C8—H8119.1C20—C26—H26116.5
C8—C9—C10117.1 (8)H1WA—O1W—H1WB116.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.842.403.197 (11)159
O1W—H1WA···Br2ii0.832.553.145 (9)130
C4—H4···O1iii0.932.423.316 (9)163
C23—H23···O2iv0.932.543.324 (9)142
Symmetry codes: (ii) x, y+1, z+2; (iii) x, y+2, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O
Mr1533.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.031 (2), 11.480 (2), 12.913 (3)
α, β, γ (°)73.13 (3), 78.58 (3), 75.24 (3)
V3)1363.6 (6)
Z1
Radiation typeMo Kα
µ (mm1)4.24
Crystal size (mm)0.23 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.442, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
12051, 4888, 1651
Rint0.077
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.099, 0.76
No. of reflections4888
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.39

Computer programs: APEX2 (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.842.403.197 (11)158.5
O1W—H1WA···Br2i0.832.553.145 (9)130.3
C4—H4···O1ii0.932.423.316 (9)162.5
C23—H23···O2iii0.932.543.324 (9)141.8
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z; (iii) x+1, y, z.
 

Acknowledgements

The author acknowledges financial support by the Youth Foundation of Lishui University, China (No. QN05002).

References

First citationBruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIglesias, S., Castillo, O., Luque, A. & Romaan, P. (2003). Inorg. Chim. Acta, 349, 273–278.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun. 6, 474–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurphy, B., Roberts, G., Tyagi, S. & Hathaway, B. J. (2004). J. Mol. Struct. 698, 25–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354–m355.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds