organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl {[5-(2,4-di­chloro­phen­yl)-1,3,4-thia­diazol-2-ylamino](4-meth­oxy­phenyl)methyl}­phospho­nate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 12 February 2009; accepted 2 April 2009; online 8 April 2009)

The title compound, C20H22Cl2N3O4PS, was synthesized by the reaction of N-(4-methoxy­benzyl­idene)-5-(2,4-dichloro­phenyl)-1,3,4-thia­diazol-2-amine and diethyl phosphite. In the crystal, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For applications of thia­diazole ligands, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Omar et al. (1986[Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). J. Heterocycl. Chem. 23, 1339-1341.]); Sato et al. (1991[Sato, H., Fukuda, K. & Ito, K. (1991). Japanese Patent JP 03 287 585.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ., 20, 1903-1905.]). For related structures, see: Wan et al. (2007[Wan, R., Han, F., Zhang, J., Yin, L. & Wang, J. (2007). Acta Cryst. E63, o4158.]); Yin et al. (2008[Yin, L.-H., Wan, R., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o1376.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22Cl2N3O4PS

  • Mr = 502.34

  • Triclinic, [P \overline 1]

  • a = 9.7100 (19) Å

  • b = 11.825 (2) Å

  • c = 11.845 (2) Å

  • α = 98.74 (3)°

  • β = 112.16 (3)°

  • γ = 103.05 (3)°

  • V = 1183.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.874, Tmax = 0.955

  • 4592 measured reflections

  • 4316 independent reflections

  • 2864 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.157

  • S = 1.02

  • 4316 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.00 2.805 (5) 156
C10—H10A⋯O4ii 0.93 2.53 3.431 (7) 163
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+3.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). They can also be widely used in the field of medicine (Sato et al., 1991), such as for anti-cancer drugs (Omar et al., 1986).

We report here the crystal structure of the title compound,(I). The molecular structure of (I) is shown in Fig.1. Bond lengths are in the normal ranges (Allen et al., 1987). The dihedral angle between the C15—C20 and S/C13/N2/N3/C14 is 32.4 (3)°, which shows that these two aromatic rings are not in the same plane. This dihedral angle is bigger than other phosphonate compounds, which is 7.54 (3)° (Wan et al., 2007) and 5.3 (2)° (Yin et al., 2008). There are intermolecular C—H···O and N—H···O hydrogen bonds (Fig. 2), which form chains along the b axis in the crystal.

Related literature top

For applications of thiadiazole ligands, see: Nakagawa et al. (1996); Omar et al. (1986); Sato et al. (1991); Wang et al. (1999). For related structures, see: Wan et al. (2007); Yin et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

N-(4–methoxyphenyl)-5-(2,4-dichlorophenyl)-1,3,4-thiadiazol-2-amine (2 mmol) and diethyl phosphite (5 mmol) were mixed in a 25 ml flask, and kept in an oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtered. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular C—H···O and N—H···O hydrogen bonds.
Diethyl {[5-(2,4-dichlorophenyl)-1,3,4-thiadiazol-2-ylamino](4- methoxyphenyl)methyl}phosphonate top
Crystal data top
C20H22Cl2N3O4PSF(000) = 520
Mr = 502.34Dx = 1.409 Mg m3
Triclinic, P1Melting point: 59365 K
a = 9.7100 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.825 (2) ÅCell parameters from 25 reflections
c = 11.845 (2) Åθ = 9–13°
α = 98.74 (3)°µ = 0.46 mm1
β = 112.16 (3)°T = 293 K
γ = 103.05 (3)°Block, colorless
V = 1183.9 (4) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1413
Tmin = 0.874, Tmax = 0.955l = 1413
4592 measured reflections3 standard reflections every 200 reflections
4316 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0281P)2 + 3.5816P]
where P = (Fo2 + 2Fc2)/3
4316 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
C20H22Cl2N3O4PSγ = 103.05 (3)°
Mr = 502.34V = 1183.9 (4) Å3
Triclinic, P1Z = 2
a = 9.7100 (19) ÅMo Kα radiation
b = 11.825 (2) ŵ = 0.46 mm1
c = 11.845 (2) ÅT = 293 K
α = 98.74 (3)°0.30 × 0.20 × 0.10 mm
β = 112.16 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2864 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.874, Tmax = 0.9553 standard reflections every 200 reflections
4592 measured reflections intensity decay: 1%
4316 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.02Δρmax = 0.56 e Å3
4316 reflectionsΔρmin = 0.98 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1915 (3)0.0588 (2)0.04559 (17)0.1292 (9)
Cl20.60795 (15)0.19354 (15)0.51042 (15)0.0812 (5)
S0.45871 (13)0.26753 (10)0.68952 (11)0.0518 (3)
P0.28539 (13)0.35163 (11)1.04983 (12)0.0508 (3)
N10.4404 (4)0.3110 (3)0.9121 (3)0.0524 (10)
H1A0.49340.38430.92470.063*
O10.1252 (4)0.2999 (3)0.9312 (4)0.0754 (11)
C10.0855 (9)0.3620 (8)0.8045 (8)0.112
H1B0.15500.28810.74270.168*
H1C0.10080.42860.76940.168*
H1D0.10690.36890.87770.168*
N20.2791 (5)0.1297 (3)0.7581 (3)0.0541 (10)
O20.2564 (4)0.2931 (3)1.1510 (3)0.0698 (10)
C20.0749 (9)0.3624 (9)0.8405 (8)0.123 (3)
H2A0.08510.32690.76580.148*
H2B0.14270.44510.87330.148*
O30.3460 (4)0.4837 (3)1.0857 (3)0.0621 (9)
N30.2468 (4)0.0703 (3)0.6370 (3)0.0541 (10)
C30.2866 (11)0.4070 (7)1.3512 (7)0.127 (3)
H3A0.35780.36671.39430.191*
H3B0.22850.42411.39810.191*
H3C0.34430.48081.34400.191*
O40.9613 (4)0.3317 (3)1.4496 (4)0.0826 (12)
C40.1777 (9)0.3289 (7)1.2240 (7)0.100 (2)
H4A0.11340.25771.23200.120*
H4B0.10910.37151.17960.120*
C50.4108 (5)0.2749 (4)1.0145 (4)0.0461 (10)
H5A0.35250.18880.98340.055*
C60.5616 (5)0.2897 (4)1.1290 (4)0.0454 (10)
C70.6196 (5)0.1950 (4)1.1435 (5)0.0572 (12)
H7A0.56710.12211.08210.069*
C80.7548 (5)0.2052 (4)1.2475 (5)0.0583 (12)
H8A0.79420.14061.25460.070*
C90.8308 (5)0.3130 (4)1.3412 (5)0.0569 (12)
C100.7780 (6)0.4085 (4)1.3276 (5)0.0735 (16)
H10A0.83000.48111.38960.088*
C110.6447 (6)0.3977 (4)1.2197 (5)0.0670 (15)
H11A0.61140.46471.20880.080*
C130.3876 (5)0.2336 (4)0.7974 (4)0.0441 (10)
C140.3304 (5)0.1296 (4)0.5888 (4)0.0418 (9)
C150.3017 (5)0.0854 (4)0.4561 (4)0.0468 (10)
C160.1499 (5)0.0152 (4)0.3671 (4)0.0515 (11)
H16A0.07080.00200.39390.062*
C170.1154 (7)0.0281 (5)0.2443 (5)0.0700 (15)
H17A0.01330.07310.18820.084*
C180.2304 (8)0.0064 (5)0.2005 (5)0.0770 (17)
C190.3822 (8)0.0635 (6)0.2868 (6)0.0856 (19)
H19A0.46080.08020.25950.103*
C200.4161 (6)0.1077 (4)0.4115 (5)0.0553 (12)
C121.0077 (7)0.2351 (6)1.4818 (7)0.089 (2)
H12A0.91750.16911.46380.133*
H12B1.07600.25711.57030.133*
H12C1.06190.21161.43390.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1449 (18)0.1336 (17)0.0748 (11)0.0205 (14)0.0628 (12)0.0134 (10)
Cl20.0454 (7)0.0980 (11)0.0881 (10)0.0027 (7)0.0353 (7)0.0024 (8)
S0.0407 (6)0.0465 (6)0.0540 (6)0.0047 (5)0.0178 (5)0.0081 (5)
P0.0381 (6)0.0437 (6)0.0588 (7)0.0023 (5)0.0147 (5)0.0120 (5)
N10.052 (2)0.0392 (19)0.045 (2)0.0059 (16)0.0124 (17)0.0063 (16)
O10.0436 (19)0.071 (2)0.083 (3)0.0092 (17)0.0032 (18)0.017 (2)
C10.1120.1120.1120.0350.0480.029
N20.058 (2)0.043 (2)0.049 (2)0.0044 (17)0.0235 (18)0.0071 (16)
O20.076 (2)0.061 (2)0.080 (2)0.0123 (19)0.045 (2)0.0251 (19)
C20.108 (6)0.143 (7)0.086 (5)0.030 (6)0.012 (4)0.030 (5)
O30.055 (2)0.0462 (18)0.077 (2)0.0073 (15)0.0238 (17)0.0175 (16)
N30.052 (2)0.046 (2)0.049 (2)0.0017 (17)0.0170 (18)0.0078 (17)
C30.167 (9)0.098 (6)0.123 (7)0.036 (6)0.073 (7)0.027 (5)
O40.060 (2)0.057 (2)0.091 (3)0.0136 (18)0.007 (2)0.019 (2)
C40.112 (6)0.104 (5)0.117 (6)0.041 (5)0.076 (5)0.037 (5)
C50.045 (2)0.037 (2)0.046 (2)0.0004 (18)0.0152 (19)0.0106 (18)
C60.035 (2)0.040 (2)0.053 (2)0.0051 (18)0.0130 (19)0.0170 (19)
C70.049 (3)0.046 (3)0.068 (3)0.010 (2)0.023 (2)0.005 (2)
C80.042 (3)0.055 (3)0.073 (3)0.019 (2)0.017 (2)0.017 (2)
C90.037 (2)0.047 (3)0.071 (3)0.008 (2)0.010 (2)0.015 (2)
C100.060 (3)0.042 (3)0.077 (4)0.009 (2)0.006 (3)0.005 (2)
C110.058 (3)0.042 (3)0.069 (3)0.015 (2)0.003 (2)0.005 (2)
C130.031 (2)0.041 (2)0.049 (2)0.0038 (17)0.0097 (18)0.0123 (18)
C140.032 (2)0.038 (2)0.052 (2)0.0068 (17)0.0179 (18)0.0104 (18)
C150.044 (2)0.039 (2)0.055 (2)0.0091 (18)0.021 (2)0.0109 (19)
C160.045 (2)0.046 (2)0.051 (2)0.001 (2)0.018 (2)0.003 (2)
C170.072 (4)0.055 (3)0.059 (3)0.008 (3)0.022 (3)0.005 (2)
C180.091 (4)0.062 (3)0.071 (3)0.001 (3)0.044 (3)0.008 (3)
C190.087 (4)0.081 (4)0.091 (4)0.002 (3)0.060 (4)0.006 (3)
C200.051 (3)0.052 (3)0.063 (3)0.006 (2)0.032 (2)0.008 (2)
C120.063 (4)0.073 (4)0.110 (5)0.027 (3)0.007 (3)0.037 (4)
Geometric parameters (Å, º) top
Cl1—C181.709 (6)C4—H4A0.9700
Cl2—C201.736 (5)C4—H4B0.9700
S—C131.723 (4)C5—C61.526 (6)
S—C141.733 (4)C5—H5A0.9800
P—O31.469 (3)C6—C71.368 (6)
P—O21.553 (4)C6—C111.378 (6)
P—O11.559 (4)C7—C81.385 (7)
P—C51.803 (5)C7—H7A0.9300
N1—C131.354 (5)C8—C91.388 (7)
N1—C51.449 (5)C8—H8A0.9300
N1—H1A0.8600C9—C101.348 (7)
O1—C21.395 (9)C10—C111.398 (7)
C1—C21.450 (8)C10—H10A0.9300
C1—H1B0.9600C11—H11A0.9300
C1—H1C0.9600C14—C151.475 (6)
C1—H1D0.9600C15—C201.391 (6)
N2—C131.306 (5)C15—C161.408 (6)
N2—N31.380 (5)C16—C171.349 (7)
O2—C41.430 (7)C16—H16A0.9300
C2—H2A0.9700C17—C181.388 (8)
C2—H2B0.9700C17—H17A0.9300
N3—C141.301 (5)C18—C191.399 (8)
C3—C41.475 (7)C19—C201.373 (7)
C3—H3A0.9600C19—H19A0.9300
C3—H3B0.9600C12—H12A0.9600
C3—H3C0.9600C12—H12B0.9600
O4—C91.365 (6)C12—H12C0.9600
O4—C121.374 (7)
C13—S—C1487.0 (2)C11—C6—C5121.9 (4)
O3—P—O2116.2 (2)C6—C7—C8121.6 (5)
O3—P—O1113.2 (2)C6—C7—H7A119.2
O2—P—O1104.1 (2)C8—C7—H7A119.2
O3—P—C5115.3 (2)C7—C8—C9119.3 (5)
O2—P—C5101.5 (2)C7—C8—H8A120.4
O1—P—C5105.2 (2)C9—C8—H8A120.4
C13—N1—C5122.3 (3)C10—C9—O4115.6 (4)
C13—N1—H1A118.8C10—C9—C8120.2 (5)
C5—N1—H1A118.8O4—C9—C8124.2 (4)
C2—O1—P122.8 (4)C9—C10—C11119.6 (5)
C2—C1—H1B109.5C9—C10—H10A120.2
C2—C1—H1C109.5C11—C10—H10A120.2
H1B—C1—H1C109.5C6—C11—C10121.4 (5)
C2—C1—H1D109.5C6—C11—H11A119.3
H1B—C1—H1D109.5C10—C11—H11A119.3
H1C—C1—H1D109.5N2—C13—N1124.0 (4)
C13—N2—N3111.7 (4)N2—C13—S114.6 (3)
C4—O2—P126.3 (4)N1—C13—S121.4 (3)
O1—C2—C1113.6 (7)N3—C14—C15121.0 (4)
O1—C2—H2A108.8N3—C14—S113.4 (3)
C1—C2—H2A108.8C15—C14—S125.3 (3)
O1—C2—H2B108.8C20—C15—C16116.7 (4)
C1—C2—H2B108.8C20—C15—C14124.2 (4)
H2A—C2—H2B107.7C16—C15—C14119.1 (4)
C14—N3—N2113.4 (3)C17—C16—C15122.2 (5)
C4—C3—H3A109.5C17—C16—H16A118.9
C4—C3—H3B109.5C15—C16—H16A118.9
H3A—C3—H3B109.5C16—C17—C18120.8 (5)
C4—C3—H3C109.5C16—C17—H17A119.6
H3A—C3—H3C109.5C18—C17—H17A119.6
H3B—C3—H3C109.5C17—C18—C19118.2 (5)
C9—O4—C12119.5 (4)C17—C18—Cl1122.4 (5)
O2—C4—C3112.8 (6)C19—C18—Cl1119.5 (4)
O2—C4—H4A109.0C20—C19—C18120.6 (5)
C3—C4—H4A109.0C20—C19—H19A119.7
O2—C4—H4B109.0C18—C19—H19A119.7
C3—C4—H4B109.0C19—C20—C15121.5 (5)
H4A—C4—H4B107.8C19—C20—Cl2116.8 (4)
N1—C5—C6112.2 (3)C15—C20—Cl2121.7 (4)
N1—C5—P109.5 (3)O4—C12—H12A109.5
C6—C5—P113.9 (3)O4—C12—H12B109.5
N1—C5—H5A106.9H12A—C12—H12B109.5
C6—C5—H5A106.9O4—C12—H12C109.5
P—C5—H5A106.9H12A—C12—H12C109.5
C7—C6—C11117.8 (4)H12B—C12—H12C109.5
C7—C6—C5120.3 (4)
O3—P—O1—C224.0 (6)C7—C6—C11—C104.4 (8)
O2—P—O1—C2151.1 (6)C5—C6—C11—C10176.5 (5)
C5—P—O1—C2102.7 (6)C9—C10—C11—C62.9 (10)
O3—P—O2—C446.8 (6)N3—N2—C13—N1179.2 (4)
O1—P—O2—C478.3 (5)N3—N2—C13—S0.2 (5)
C5—P—O2—C4172.6 (5)C5—N1—C13—N215.7 (7)
P—O1—C2—C1133.6 (6)C5—N1—C13—S165.4 (3)
C13—N2—N3—C140.1 (6)C14—S—C13—N20.3 (4)
P—O2—C4—C398.2 (7)C14—S—C13—N1179.3 (4)
C13—N1—C5—C6118.7 (4)N2—N3—C14—C15174.2 (4)
C13—N1—C5—P113.8 (4)N2—N3—C14—S0.4 (5)
O3—P—C5—N158.4 (3)C13—S—C14—N30.4 (4)
O2—P—C5—N1175.2 (3)C13—S—C14—C15173.9 (4)
O1—P—C5—N167.0 (3)N3—C14—C15—C20150.9 (5)
O3—P—C5—C668.1 (3)S—C14—C15—C2036.0 (7)
O2—P—C5—C658.3 (3)N3—C14—C15—C1628.6 (7)
O1—P—C5—C6166.5 (3)S—C14—C15—C16144.4 (4)
N1—C5—C6—C793.9 (5)C20—C15—C16—C170.5 (7)
P—C5—C6—C7141.0 (4)C14—C15—C16—C17180.0 (5)
N1—C5—C6—C1185.2 (6)C15—C16—C17—C181.0 (9)
P—C5—C6—C1139.9 (6)C16—C17—C18—C191.2 (9)
C11—C6—C7—C81.9 (7)C16—C17—C18—Cl1179.6 (5)
C5—C6—C7—C8178.9 (4)C17—C18—C19—C200.9 (10)
C6—C7—C8—C91.9 (8)Cl1—C18—C19—C20179.3 (5)
C12—O4—C9—C10168.9 (6)C18—C19—C20—C150.4 (10)
C12—O4—C9—C812.1 (9)C18—C19—C20—Cl2179.9 (5)
C7—C8—C9—C103.5 (8)C16—C15—C20—C190.2 (8)
C7—C8—C9—O4177.5 (5)C14—C15—C20—C19179.7 (5)
O4—C9—C10—C11179.8 (5)C16—C15—C20—Cl2179.6 (4)
C8—C9—C10—C111.1 (9)C14—C15—C20—Cl20.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.002.805 (5)156
C10—H10A···O4ii0.932.533.431 (7)163
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+3.

Experimental details

Crystal data
Chemical formulaC20H22Cl2N3O4PS
Mr502.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7100 (19), 11.825 (2), 11.845 (2)
α, β, γ (°)98.74 (3), 112.16 (3), 103.05 (3)
V3)1183.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.874, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
4592, 4316, 2864
Rint0.054
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.157, 1.02
No. of reflections4316
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.98

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.86002.00002.805 (5)156.00
C10—H10A···O4ii0.93002.53003.431 (7)163.00
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+3.
 

Acknowledgements

The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallo­graphic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOmar, A., Mohsen, M. E. & Wafa, O. A. (1986). J. Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationSato, H., Fukuda, K. & Ito, K. (1991). Japanese Patent JP 03 287 585.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, R., Han, F., Zhang, J., Yin, L. & Wang, J. (2007). Acta Cryst. E63, o4158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ., 20, 1903–1905.  CAS Google Scholar
First citationYin, L.-H., Wan, R., Han, F., Wang, B. & Wang, J.-T. (2008). Acta Cryst. E64, o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds