organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1081

1-Carb­oxy­methyl-2-ethyl-4-methyl-1H-imidazol-3-ium chloride monohydrate

aSchool of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, People's Republic of China, and bThe Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, People's Republic of China
*Correspondence e-mail: shineng914@yahoo.com.cn

(Received 27 March 2009; accepted 9 April 2009; online 22 April 2009)

In the title compound, C8H13N2O2+·Cl·H2O, the methyl C atom of the ethyl group is slightly out of the imidazole plane, with an N—C(ring)—C—C torsion angle of −15.1 (2)°. In the crystal structure, there are strong inter­molecular hydrogen-bonding inter­actions between the solvent water mol­ecule, the free chloride anion and the organic cation, resulting in a two-dimensional supra­molecular network in the ab plane.

Related literature

The title compound is a vital intermediate in the synthesis of bisphosphonic acid, i.e. 2-(2-ethyl-4-methyl-1H-imidazol-1-yl)-1-hydroxyethane-1,1-diyldiphosphonic acid; for a general background on bis­phospho­nates, see: Dawson (2003[Dawson, N. A. (2003). Exp. Opin. Pharmacother. 4, 705-716.]); Vasireddy et al. (2003[Vasireddy, S., Talwakar, A., Miller, H., Mehan, H. & David, R. S. (2003). Clin. Rheumatol. 22, 376-380.]). For related structures, see: Gao et al. (2004[Gao, S., Zhao, H., Huo, L.-H., Gao, J.-S., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o1391-o1393.]); Barczynski et al. (2008[Barczynski, P., Komasa, A., Ratajczak-Sitarz, M., Katrusiak, A., Huczynki, A. & Brzezinski, B. (2008). J. Mol. Struct. 876, 170-176.]). For the synthesis, see: Zederenko et al. (1994[Zederenko, P., Gil, M. S. & Ballesteros, P. (1994). J. Org. Chem. 59, 6268-6273.]).

[Scheme 1]

Experimental

Crystal data
  • C8H13N2O2+·Cl·H2O

  • Mr = 222.67

  • Monoclinic, P 21 /n

  • a = 11.077 (2) Å

  • b = 8.4542 (18) Å

  • c = 11.938 (3) Å

  • β = 90.265 (3)°

  • V = 1117.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 93 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.880, Tmax = 0.894

  • 8869 measured reflections

  • 2532 independent reflections

  • 2203 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.00

  • 2532 reflections

  • 145 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1 0.881 (17) 2.300 (18) 3.1635 (14) 166.6 (15)
O3—H3A⋯Cl1 0.91 (2) 2.20 (2) 3.1062 (14) 177 (2)
O1—H1O⋯O3i 0.96 (2) 1.60 (2) 2.5557 (16) 170 (2)
O3—H3B⋯Cl1ii 0.96 (2) 2.14 (2) 3.0860 (14) 168.2 (19)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bisphosphonates with an imidazole ring, namely zoledronate, are effective bone-specific palliative treatments that reduce tumor-induced skeletal complications. With this idea in mind, we intend to synthesis one of the third-generation bisphosphonate compound, 2-(2-ethyl-4-methyl-1H-imidazol-1-yl)-1–1-hydroxyethane-1,1- bisphosphonic acid, which is potentially used for treatment of patients. As a vital intermediate compound for the stepwise reactions of the bisphosphonic acid, the synthesis and crystal structure of the title compound has been reported herein.

In the title compound (I) (Fig. 1), C8H13N2O2+.Cl-.H2O, all the carbon atoms (C4, C5 and C7) linked to the imidazole ring are almost coplanar with the imidazole ring. The ethyl is slightly out of the imidazole plane with an N1—C3(ring)-C5—C6 torsion angle of -15.116 (211)°. While the 1-substituted acetic acid group is approximately perpendicular to the imidazole ring [dihedral angle = 77.438 (111)°]. There are strong intermolecular hydrogen interactions between the free water molecule (O3), the free chloride anion (Cl1), and the O1 and N1 from the organic cation (Table 1). And the crystal structure is stabilized by these strong hydrogen bond interactions to form two-dimensional supramolecular network along ab plane (Table 1 and Fig. 2).

Related literature top

For general background to bisphosphonates, see: Dawson (2003); Vasireddy et al. (2003). For related structures, see: Gao et al. (2004); Barczynski et al. (2008). For the synthesis, see: Zederenko et al. (1994).

Experimental top

The title compound (I) was synthesized according to previous literature (Zederenko et al., 1994). After reaction, a white powder was obtained (yield 65%). Mp 170–171 °C. Then, compound (I) was recrystallized from acetone solvent; colourless block-shaped crystals were formed after several days (yield 61%). Analysis calculated for C8H15ClN2O3: 43.15, H 6.79, N 12.58%; found: C 43.01, H 6.96, N 12.45%.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Perspective view of the supramolecular network built from strong intermolecular hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted.
1-Carboxymethyl-2-ethyl-4-methyl-1H-imidazol-3-ium chloride monohydrate top
Crystal data top
C8H13N2O2+·Cl·H2OF(000) = 472
Mr = 222.67Dx = 1.323 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3544 reflections
a = 11.077 (2) Åθ = 3.0–27.5°
b = 8.4542 (18) ŵ = 0.33 mm1
c = 11.938 (3) ÅT = 93 K
β = 90.265 (3)°Block, colorless
V = 1117.9 (4) Å30.40 × 0.40 × 0.35 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
2532 independent reflections
Radiation source: Rotating Anode2203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2004)
h = 1314
Tmin = 0.880, Tmax = 0.894k = 1010
8869 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.06P]
where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C8H13N2O2+·Cl·H2OV = 1117.9 (4) Å3
Mr = 222.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.077 (2) ŵ = 0.33 mm1
b = 8.4542 (18) ÅT = 93 K
c = 11.938 (3) Å0.40 × 0.40 × 0.35 mm
β = 90.265 (3)°
Data collection top
Rigaku SPIDER
diffractometer
2532 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2004)
2203 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.894Rint = 0.031
8869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.29 e Å3
2532 reflectionsΔρmin = 0.20 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19761 (3)0.57092 (4)0.31835 (3)0.02509 (14)
O10.88525 (10)0.95264 (13)0.14174 (10)0.0295 (3)
O20.79630 (9)0.72040 (13)0.17923 (9)0.0273 (3)
O30.40590 (10)0.32662 (16)0.33959 (12)0.0382 (3)
N10.42391 (11)0.70595 (14)0.18900 (10)0.0184 (3)
N20.57147 (10)0.84373 (14)0.12622 (10)0.0184 (3)
C10.42085 (12)0.68984 (18)0.07348 (12)0.0210 (3)
C20.51409 (12)0.77535 (17)0.03442 (12)0.0211 (3)
H20.53660.78690.04180.025*
C30.51465 (12)0.79974 (16)0.21927 (12)0.0178 (3)
C40.32597 (14)0.5958 (2)0.01537 (14)0.0292 (4)
H4A0.34260.59340.06520.035*
H4B0.24690.64450.02810.035*
H4C0.32580.48770.04490.035*
C50.54916 (13)0.84647 (19)0.33464 (12)0.0234 (3)
H5A0.56770.96100.33550.028*
H5B0.62360.78910.35620.028*
C60.45261 (15)0.8131 (2)0.42068 (13)0.0304 (4)
H6A0.37890.87100.40080.037*
H6B0.48090.84730.49470.037*
H6C0.43550.69940.42220.037*
C70.67760 (12)0.94450 (17)0.12097 (12)0.0202 (3)
H7A0.66721.03450.17310.024*
H7B0.68490.98790.04430.024*
C80.79233 (12)0.85727 (18)0.15091 (12)0.0205 (3)
H1N0.3693 (15)0.667 (2)0.2348 (14)0.027 (4)*
H1O0.961 (2)0.900 (3)0.1558 (18)0.060 (7)*
H3A0.344 (2)0.397 (3)0.336 (2)0.077 (8)*
H3B0.385 (2)0.243 (3)0.289 (2)0.067 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0190 (2)0.0276 (2)0.0287 (2)0.00309 (14)0.00545 (15)0.00028 (14)
O10.0168 (5)0.0245 (6)0.0472 (7)0.0020 (5)0.0009 (5)0.0008 (5)
O20.0199 (5)0.0236 (6)0.0384 (6)0.0035 (4)0.0019 (5)0.0087 (5)
O30.0206 (6)0.0333 (7)0.0605 (9)0.0012 (5)0.0053 (6)0.0059 (6)
N10.0141 (6)0.0215 (6)0.0196 (6)0.0007 (5)0.0018 (5)0.0005 (5)
N20.0139 (6)0.0212 (6)0.0202 (6)0.0015 (5)0.0002 (5)0.0007 (5)
C10.0162 (7)0.0250 (8)0.0220 (7)0.0033 (6)0.0002 (6)0.0028 (6)
C20.0178 (7)0.0276 (8)0.0178 (7)0.0040 (6)0.0004 (5)0.0008 (6)
C30.0139 (6)0.0179 (7)0.0217 (7)0.0029 (5)0.0018 (5)0.0005 (5)
C40.0202 (8)0.0392 (10)0.0281 (8)0.0016 (7)0.0013 (6)0.0088 (7)
C50.0236 (8)0.0269 (8)0.0197 (7)0.0040 (6)0.0004 (6)0.0027 (6)
C60.0303 (9)0.0381 (10)0.0229 (8)0.0054 (7)0.0031 (7)0.0040 (7)
C70.0165 (7)0.0195 (7)0.0247 (7)0.0007 (6)0.0021 (6)0.0018 (5)
C80.0173 (7)0.0232 (8)0.0211 (7)0.0001 (6)0.0021 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C81.3125 (18)C3—C51.481 (2)
O1—H1O0.96 (2)C4—H4A0.9800
O2—C81.2063 (18)C4—H4B0.9800
O3—H3A0.91 (2)C4—H4C0.9800
O3—H3B0.96 (2)C5—C61.513 (2)
N1—C31.3290 (18)C5—H5A0.9900
N1—C11.3860 (18)C5—H5B0.9900
N1—H1N0.881 (17)C6—H6A0.9800
N2—C31.3322 (18)C6—H6B0.9800
N2—C21.3903 (18)C6—H6C0.9800
N2—C71.4534 (18)C7—C81.5109 (19)
C1—C21.346 (2)C7—H7A0.9900
C1—C41.487 (2)C7—H7B0.9900
C2—H20.9500
C8—O1—H1O112.3 (13)H4B—C4—H4C109.5
H3A—O3—H3B106.1 (16)C3—C5—C6113.66 (12)
C3—N1—C1110.13 (12)C3—C5—H5A108.8
C3—N1—H1N125.1 (11)C6—C5—H5A108.8
C1—N1—H1N124.5 (11)C3—C5—H5B108.8
C3—N2—C2108.97 (12)C6—C5—H5B108.8
C3—N2—C7125.80 (12)H5A—C5—H5B107.7
C2—N2—C7125.22 (12)C5—C6—H6A109.5
C2—C1—N1106.06 (12)C5—C6—H6B109.5
C2—C1—C4131.87 (14)H6A—C6—H6B109.5
N1—C1—C4122.06 (13)C5—C6—H6C109.5
C1—C2—N2107.40 (13)H6A—C6—H6C109.5
C1—C2—H2126.3H6B—C6—H6C109.5
N2—C2—H2126.3N2—C7—C8112.54 (12)
N1—C3—N2107.43 (12)N2—C7—H7A109.1
N1—C3—C5127.13 (13)C8—C7—H7A109.1
N2—C3—C5125.44 (13)N2—C7—H7B109.1
C1—C4—H4A109.5C8—C7—H7B109.1
C1—C4—H4B109.5H7A—C7—H7B107.8
H4A—C4—H4B109.5O2—C8—O1125.81 (14)
C1—C4—H4C109.5O2—C8—C7124.34 (13)
H4A—C4—H4C109.5O1—C8—C7109.85 (13)
C3—N1—C1—C20.88 (16)C7—N2—C3—N1178.83 (12)
C3—N1—C1—C4177.84 (13)C2—N2—C3—C5179.31 (13)
N1—C1—C2—N20.76 (16)C7—N2—C3—C50.3 (2)
C4—C1—C2—N2177.78 (15)N1—C3—C5—C615.1 (2)
C3—N2—C2—C10.40 (16)N2—C3—C5—C6165.88 (14)
C7—N2—C2—C1179.39 (13)C3—N2—C7—C877.86 (17)
C1—N1—C3—N20.63 (16)C2—N2—C7—C8100.96 (15)
C1—N1—C3—C5179.78 (14)N2—C7—C8—O22.0 (2)
C2—N2—C3—N10.14 (15)N2—C7—C8—O1178.25 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.881 (17)2.300 (18)3.1635 (14)166.6 (15)
O3—H3A···Cl10.91 (2)2.20 (2)3.1062 (14)177 (2)
O1—H1O···O3i0.96 (2)1.60 (2)2.5557 (16)170 (2)
O3—H3B···Cl1ii0.96 (2)2.14 (2)3.0860 (14)168 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H13N2O2+·Cl·H2O
Mr222.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)11.077 (2), 8.4542 (18), 11.938 (3)
β (°) 90.265 (3)
V3)1117.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2004)
Tmin, Tmax0.880, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
8869, 2532, 2203
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.00
No. of reflections2532
No. of parameters145
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.881 (17)2.300 (18)3.1635 (14)166.6 (15)
O3—H3A···Cl10.91 (2)2.20 (2)3.1062 (14)177 (2)
O1—H1O···O3i0.96 (2)1.60 (2)2.5557 (16)170 (2)
O3—H3B···Cl1ii0.96 (2)2.14 (2)3.0860 (14)168.2 (19)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Wu Jieping Medical Fund (32067500615) and the National Natural Science Foundation of China (No. 20801024).

References

First citationBarczynski, P., Komasa, A., Ratajczak-Sitarz, M., Katrusiak, A., Huczynki, A. & Brzezinski, B. (2008). J. Mol. Struct. 876, 170–176.  Web of Science CrossRef CAS
First citationDawson, N. A. (2003). Exp. Opin. Pharmacother. 4, 705–716.  Web of Science CrossRef CAS
First citationGao, S., Zhao, H., Huo, L.-H., Gao, J.-S., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o1391–o1393.  Web of Science CSD CrossRef IUCr Journals
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationVasireddy, S., Talwakar, A., Miller, H., Mehan, H. & David, R. S. (2003). Clin. Rheumatol. 22, 376–380.  Web of Science CrossRef PubMed
First citationZederenko, P., Gil, M. S. & Ballesteros, P. (1994). J. Org. Chem. 59, 6268–6273.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1081
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds