organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1137-o1138

Genistein-3′-sulfonic acid dihydrate

aKey Laboratory of Jiangxi University for Functional Materials Chemistry, Department of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: yongrongxie@yahoo.com.cn

(Received 20 March 2009; accepted 21 April 2009; online 30 April 2009)

In the title compound [systematic name: 5-(5,7-dihydr­oxy-4-oxo-4H-chromen­yl)-2-hydroxy­benzene­sulfonic acid dihydrate], C15H10O8S·2H2O, the benzopyran­one ring is not coplanar with the phenyl ring, the dihedral angle between them being 41.35 (3)°. No H atom was placed on the sulphonic acid group because it was not possible to distinguish between the two S=O bonds and the S—O bond. In the crystal, the mol­ecules are linked by classical O—H⋯O and C—H⋯O intra- and inter­molecular hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distance of 3.4523 (14) Å between the 1, 4-pyran­one rings and the benzene rings, and 3.6337 (14) Å between the benzene rings] into a supra­molecular structure.

Related literature

Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin, see: Curnow et al. (1955[Curnow, D. H. & Rossiter, R. C. (1955). Aust. J. Exp. Biol. Med. Sci. 33, 243-248.]); Kaufman et al. (1997[Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J. & Hoyt, J. E. (1997). J. Altern. Complement Med. 3, 7-12.]). For its anti-tumour, anti-arteriosclerosis and anti-bone loss properties, see: Fritz et al. (1998[Fritz, W., Coward, L., Wang, J. & Lamartiniere, C. (1998). Carcinogenesis, 19, 2151-2158.]); Zhu et al. (2006[Zhu, G. C., Ding, Z., Chen, Z. S., Dong, C., Guo, H. & Chen, B. C. (2006). Transpl. Proc. 38, 3307-3308.]). It can also reduce plasma lipids and kill various cancer cells without damaging normal cells, see: Fanti et al. (1998[Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D. & Malluche, H. H. (1998). Osteoporos Int. 8, 274-281.]); Lamartiniere (2000[Lamartiniere, C. A. (2000). Am. J. Clin. Nutr. 71, 1705S-1707S.]). It has poor solubility in water and fat (Suo et al., 2005[Suo, Z. R., Zhang, Z. T. & Zheng, J. B. (2005). Chin. J. Appl. Chem. 22, 1083-1086.]). One effective way to increase the solubility of these compounds is to involve a sulfonate group, see: Kopacz (1981[Kopacz, M. (1981). Pol. J. Chem. 55, 227-229.]); Pusz et al. (2001[Pusz, J., Nitka, B. & Wolowiec, S. (2001). Pol. J. Chem. 75, 795-801.]); Xie et al. (2002[Xie, Y. R., Xiong, R. G., Xue, X., Chen, X. T., Xue, Z. L. & You, X. Z. (2002). Inorg. Chem. 41, 3323-3326.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10O8S·2H2O

  • Mr = 386.31

  • Triclinic, [P \overline 1]

  • a = 7.9100 (4) Å

  • b = 8.1977 (3) Å

  • c = 14.3431 (7) Å

  • α = 73.626 (3)°

  • β = 80.346 (3)°

  • γ = 65.498 (3)°

  • V = 810.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.988

  • 7136 measured reflections

  • 3736 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 0.95

  • 3736 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H1⋯O1W 0.85 2.07 2.915 (3) 173
O2W—H2⋯O7Ai 0.85 2.17 2.999 (15) 165
O2W—H2⋯O6Aii 0.85 2.58 2.903 (13) 104
O2—H2A⋯O1 0.82 1.85 2.580 (2) 148
O1W—H3⋯O8Aiii 0.85 2.23 2.968 (7) 146
O3—H3A⋯O8Aiv 0.82 1.89 2.705 (8) 171
O1W—H4⋯O5 0.85 2.18 3.000 (2) 162
O5—H5A⋯O6A 0.82 2.40 2.835 (12) 114
O5—H5A⋯O6Av 0.82 2.05 2.784 (14) 148
C6—H6A⋯O7Avi 0.93 2.44 3.356 (15) 169
C8—H8A⋯O2iii 0.93 2.31 3.217 (3) 164
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) -x+1, -y+2, -z+1; (v) -x+2, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin (Curnow et al. 1955; Kaufman et al., 1997). It has physiological functions of anti-tumour, anti-arteriosclerosis, anti-bone loss (Fritz et al., 1998; Zhu et al., 2006). It can also reduce plasma lipids and kill various cancer cells without damaging normal cells (Fanti et al., 1998; Lamartiniere, 2000). Nevertheless, its medical applications are restricted because of its poor solubility in water and fat (Suo et al.,2005). One effective way to increase the solubility of these compounds is to involve a sulfonate group (Kopacz, 1981; Pusz et al., 2001; Xie et al. 2002).

We present here the structure of (I, Fig. 1), a new derivative of Genistein. In (I) the molecules are linked by classic O—H···O and C—H···O intra- and intermolecular hydrogen bonds (Table 1). Adjacent benzopyranone rings are aligned in a parallel and alternatively inverse fashion, with a centroid-centroid distance of 3.4523 (14)Å between 1, 4-pyranone rings and benzene rings, and 3.6337 (14)Å between the benzene rings (Table 2), indicating significant stacking interactions that form columns running along the a axis. The hydrogen bonding and π-π stacking interactions extend the structure into a 3-D supramolecular structure (Fig. 2 and Fig. 3).

Related literature top

Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin, see: Curnow et al. (1955); Kaufman et al. (1997). For its anti-tumour, anti-arteriosclerosis and anti-bone loss properties, see: Fritz et al. (1998); Zhu et al. (2006). It can also reduce plasma lipids and kill various cancer cells without damaging normal cells, see: Fanti et al. (1998); Lamartiniere (2000). It has poor solubility in water and fat (Suo et al., 2005). One effective way to increase the solubility of these compounds is to involve a sulfonate group, see: Kopacz (1981); Pusz et al. (2001); Xie et al. (2002).

Experimental top

In a 100 ml flask are placed 40 ml 98% sulfuric acid and 10 g (37 mmol) genistein with stirrer. The resulting mixture is stirred at room temperature for 6 h. The reaction mixture is carefully diluted by addition of 40 ml ice water. The resulting yellow solid is filtered, and recrystallized from 50 ml of 90% acetonitrile to give 9.1–11 g (70–85%) of the title compound yellow crystals.

Refinement top

The analysis indicated that all three O atoms of the sulfonate group are disordered and therefore the refinement did not converge satisfactorily. Two sulfonate groups, with an occupancies of 0.53740 (O6A, O7A, O8A) and 0.46260(O6B, O7B, O8B), respectively, could be detected and refined. No H atom was added to the sulfonate group because it was not possible to distinguish between the 2 S=O bonds and the S—O bond. The disorder in the SO3 group was treated with the tools available in SHELXL97 (Sheldrick, 2008).

H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and were included in the refinement in the riding-model approximation. The H atoms of water molecules were located in difference Fourier maps and then idealized and treated as riding, with O—H = 0.82–0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding motif in (I). Dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. View of the π-π stacking for compound (I) along the b axis.
5-(5,7-dihydroxy-4-oxo-4H-chromenyl)-2-hydroxybenzenesulfonic acid dihydrate top
Crystal data top
C15H10O8S·2H2OV = 810.61 (6) Å3
Mr = 386.31Z = 2
Triclinic, P1F(000) = 398
Hall symbol: -P 1Dx = 1.579 Mg m3
a = 7.9100 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1977 (3) Åθ = 2.8–27.6°
c = 14.3431 (7) ŵ = 0.26 mm1
α = 73.626 (3)°T = 296 K
β = 80.346 (3)°Block, yellow
γ = 65.498 (3)°0.20 × 0.20 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3736 independent reflections
Radiation source: fine-focus sealed tube2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.952, Tmax = 0.988k = 1010
7136 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0499P)2]
where P = (Fo2 + 2Fc2)/3
3736 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C15H10O8S·2H2Oγ = 65.498 (3)°
Mr = 386.31V = 810.61 (6) Å3
Triclinic, P1Z = 2
a = 7.9100 (4) ÅMo Kα radiation
b = 8.1977 (3) ŵ = 0.26 mm1
c = 14.3431 (7) ÅT = 296 K
α = 73.626 (3)°0.20 × 0.20 × 0.05 mm
β = 80.346 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2466 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.988Rint = 0.037
7136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.95Δρmax = 0.52 e Å3
3736 reflectionsΔρmin = 0.47 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.91573 (8)0.62831 (8)0.13396 (4)0.02871 (17)
O10.3853 (2)0.9816 (2)0.33901 (11)0.0349 (4)
O20.2966 (2)1.1865 (2)0.46121 (12)0.0463 (5)
H2A0.33711.15350.41010.056*
O30.0060 (2)0.9940 (2)0.76568 (11)0.0441 (5)
H3A0.03261.06990.78040.053*
O40.1972 (2)0.62379 (19)0.54241 (11)0.0325 (4)
O50.7199 (2)0.4397 (2)0.05141 (12)0.0483 (5)
H5A0.83240.41280.04920.058*
C10.3351 (3)0.8670 (3)0.40347 (15)0.0263 (5)
C20.2545 (3)0.9026 (3)0.49667 (15)0.0246 (5)
C30.2355 (3)1.0616 (3)0.52404 (16)0.0296 (5)
C40.1563 (3)1.0929 (3)0.61293 (17)0.0339 (6)
H4A0.14651.19760.63030.041*
C50.0900 (3)0.9663 (3)0.67758 (16)0.0305 (5)
C60.1018 (3)0.8113 (3)0.65325 (16)0.0299 (5)
H6A0.05500.72900.69590.036*
C70.1848 (3)0.7812 (3)0.56408 (16)0.0263 (5)
C80.2829 (3)0.5863 (3)0.45676 (16)0.0313 (5)
H8A0.29440.47620.44480.038*
C90.3528 (3)0.6939 (3)0.38735 (15)0.0261 (5)
C100.4469 (3)0.6336 (3)0.29699 (15)0.0265 (5)
C110.3792 (3)0.5469 (3)0.25092 (17)0.0352 (6)
H11A0.26930.53040.27530.042*
C120.4730 (3)0.4846 (3)0.16923 (18)0.0392 (6)
H12A0.42490.42770.13910.047*
C130.6385 (3)0.5062 (3)0.13165 (16)0.0317 (5)
C140.7058 (3)0.5965 (3)0.17563 (15)0.0250 (5)
C150.6094 (3)0.6585 (3)0.25784 (15)0.0259 (5)
H15A0.65540.71810.28720.031*
O1W0.6658 (3)0.1139 (2)0.02597 (15)0.0646 (6)
H30.76770.02880.04700.078*
H40.68000.21400.01910.078*
O2W0.3261 (3)0.0875 (3)0.13170 (15)0.0775 (7)
H10.42610.09880.10450.093*
H20.23630.18630.13980.093*
O6A0.9142 (16)0.6736 (12)0.0261 (8)0.0346 (14)0.54
O7A1.067 (2)0.456 (2)0.1681 (9)0.043 (2)0.54
O8A0.8999 (11)0.7821 (10)0.1651 (4)0.0369 (13)0.54
O6B0.899 (2)0.7323 (15)0.0381 (10)0.067 (3)0.46
O7B1.059 (2)0.450 (3)0.1480 (12)0.069 (5)0.46
O8B0.9427 (13)0.7255 (13)0.2012 (5)0.061 (3)0.46
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (3)0.0327 (3)0.0301 (3)0.0149 (3)0.0043 (2)0.0138 (3)
O10.0453 (10)0.0311 (9)0.0315 (9)0.0208 (8)0.0095 (7)0.0101 (7)
O20.0694 (13)0.0418 (10)0.0434 (11)0.0385 (10)0.0200 (9)0.0212 (8)
O30.0580 (12)0.0550 (11)0.0329 (10)0.0313 (10)0.0116 (8)0.0246 (8)
O40.0455 (10)0.0261 (8)0.0295 (9)0.0185 (8)0.0071 (7)0.0101 (7)
O50.0406 (10)0.0809 (13)0.0468 (11)0.0340 (10)0.0169 (8)0.0454 (10)
C10.0241 (11)0.0258 (11)0.0273 (12)0.0086 (10)0.0008 (9)0.0061 (10)
C20.0267 (11)0.0224 (11)0.0249 (12)0.0098 (9)0.0003 (9)0.0068 (9)
C30.0311 (12)0.0291 (12)0.0326 (13)0.0152 (10)0.0024 (10)0.0105 (10)
C40.0380 (13)0.0367 (13)0.0367 (14)0.0181 (11)0.0011 (10)0.0197 (11)
C50.0292 (12)0.0394 (13)0.0235 (12)0.0107 (11)0.0007 (9)0.0133 (10)
C60.0332 (13)0.0296 (12)0.0269 (12)0.0140 (10)0.0017 (9)0.0056 (10)
C70.0267 (12)0.0236 (11)0.0287 (12)0.0085 (10)0.0020 (9)0.0080 (10)
C80.0374 (13)0.0267 (12)0.0318 (13)0.0123 (11)0.0066 (10)0.0154 (10)
C90.0250 (11)0.0253 (11)0.0280 (12)0.0090 (10)0.0009 (9)0.0091 (10)
C100.0275 (11)0.0263 (11)0.0253 (12)0.0090 (10)0.0012 (9)0.0093 (9)
C110.0296 (13)0.0463 (14)0.0379 (14)0.0203 (12)0.0054 (10)0.0180 (12)
C120.0363 (14)0.0562 (16)0.0432 (15)0.0268 (13)0.0056 (11)0.0299 (13)
C130.0318 (13)0.0403 (13)0.0272 (12)0.0145 (11)0.0030 (9)0.0163 (11)
C140.0239 (11)0.0253 (11)0.0257 (12)0.0096 (9)0.0003 (9)0.0064 (9)
C150.0257 (11)0.0262 (11)0.0272 (12)0.0084 (10)0.0033 (9)0.0101 (9)
O1W0.0601 (13)0.0449 (11)0.0873 (16)0.0203 (10)0.0079 (11)0.0116 (11)
O2W0.0639 (15)0.0834 (15)0.0737 (16)0.0237 (13)0.0042 (11)0.0139 (12)
O6A0.036 (2)0.045 (3)0.023 (2)0.015 (3)0.0032 (16)0.011 (2)
O7A0.029 (3)0.051 (6)0.043 (3)0.018 (3)0.009 (2)0.005 (3)
O8A0.048 (3)0.048 (3)0.035 (3)0.031 (2)0.003 (2)0.024 (2)
O6B0.056 (5)0.095 (9)0.041 (6)0.041 (6)0.002 (4)0.014 (5)
O7B0.025 (5)0.032 (5)0.129 (13)0.000 (4)0.019 (6)0.018 (7)
O8B0.051 (5)0.123 (8)0.053 (5)0.058 (5)0.022 (3)0.065 (5)
Geometric parameters (Å, º) top
S1—O6B1.394 (14)C4—C51.399 (3)
S1—O8A1.404 (7)C4—H4A0.9300
S1—O7B1.412 (16)C5—C61.374 (3)
S1—O7A1.438 (14)C6—C71.375 (3)
S1—O6A1.487 (11)C6—H6A0.9300
S1—O8B1.501 (8)C8—C91.342 (3)
S1—C141.766 (2)C8—H8A0.9300
O1—C11.262 (2)C9—C101.487 (3)
O2—C31.356 (3)C10—C151.385 (3)
O2—H2A0.8207C10—C111.389 (3)
O3—C51.358 (2)C11—C121.384 (3)
O3—H3A0.8205C11—H11A0.9300
O4—C81.350 (2)C12—C131.392 (3)
O4—C71.372 (2)C12—H12A0.9300
O5—C131.360 (2)C13—C141.390 (3)
O5—H5A0.8206C14—C151.395 (3)
C1—C21.435 (3)C15—H15A0.9300
C1—C91.447 (3)O1W—H30.8508
C2—C71.401 (3)O1W—H40.8502
C2—C31.408 (3)O2W—H10.8500
C3—C41.366 (3)O2W—H20.8500
O8A—S1—O7A117.5 (7)C6—C5—C4121.3 (2)
O8A—S1—O6A110.1 (4)C5—C6—C7118.1 (2)
O7A—S1—O6A110.5 (6)C5—C6—H6A121.0
O8A—S1—C14105.6 (3)C7—C6—H6A121.0
O7A—S1—C14107.8 (7)O4—C7—C6116.80 (19)
O6A—S1—C14104.3 (5)O4—C7—C2120.09 (19)
O6B—S1—O7B115.3 (8)C6—C7—C2123.1 (2)
O6B—S1—O8B112.3 (5)C9—C8—O4125.7 (2)
O7B—S1—O8B107.7 (8)C9—C8—H8A117.2
O6B—S1—C14108.5 (6)O4—C8—H8A117.2
O8A—S1—C14105.6 (3)C8—C9—C1118.4 (2)
O7B—S1—C14106.3 (9)C8—C9—C10119.97 (19)
O7A—S1—C14107.8 (7)C1—C9—C10121.67 (18)
O6A—S1—C14104.3 (5)C15—C10—C11118.0 (2)
O8B—S1—C14106.2 (4)C15—C10—C9120.2 (2)
C3—O2—H2A109.4C11—C10—C9121.7 (2)
C5—O3—H3A109.5C12—C11—C10120.9 (2)
C8—O4—C7118.66 (16)C12—C11—H11A119.5
C13—O5—H5A109.4C10—C11—H11A119.5
O1—C1—C2121.64 (19)C11—C12—C13120.7 (2)
O1—C1—C9122.13 (19)C11—C12—H12A119.6
C2—C1—C9116.23 (18)C13—C12—H12A119.6
C7—C2—C3116.69 (19)O5—C13—C14124.9 (2)
C7—C2—C1120.75 (19)O5—C13—C12116.1 (2)
C3—C2—C1122.53 (19)C14—C13—C12119.0 (2)
O2—C3—C4119.2 (2)C13—C14—C15119.4 (2)
O2—C3—C2119.6 (2)C13—C14—S1122.28 (16)
C4—C3—C2121.2 (2)C15—C14—S1118.27 (17)
C3—C4—C5119.6 (2)C10—C15—C14121.9 (2)
C3—C4—H4A120.2C10—C15—H15A119.1
C5—C4—H4A120.2C14—C15—H15A119.1
O3—C5—C6117.1 (2)H3—O1W—H4105.1
O3—C5—C4121.6 (2)H1—O2W—H2116.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H1···O1W0.852.072.915 (3)173
O2W—H2···O7Ai0.852.172.999 (15)165
O2W—H2···O6Aii0.852.582.903 (13)104
O2—H2A···O10.821.852.580 (2)148
O1W—H3···O8Aiii0.852.232.968 (7)146
O3—H3A···O8Aiv0.821.892.705 (8)171
O1W—H4···O50.852.183.000 (2)162
O5—H5A···O6A0.822.402.835 (12)114
O5—H5A···O6Av0.822.052.784 (14)148
C6—H6A···O7Avi0.932.443.356 (15)169
C8—H8A···O2iii0.932.313.217 (3)164
C15—H15A···O10.932.522.944 (3)108
C15—H15A···O8A0.932.502.868 (9)104
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x+2, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10O8S·2H2O
Mr386.31
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9100 (4), 8.1977 (3), 14.3431 (7)
α, β, γ (°)73.626 (3), 80.346 (3), 65.498 (3)
V3)810.61 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7136, 3736, 2466
Rint0.037
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 0.95
No. of reflections3736
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.47

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H1···O1W0.852.072.915 (3)173
O2W—H2···O7Ai0.852.172.999 (15)165
O2W—H2···O6Aii0.852.582.903 (13)104
O2—H2A···O10.821.852.580 (2)148
O1W—H3···O8Aiii0.852.232.968 (7)146
O3—H3A···O8Aiv0.821.892.705 (8)171
O1W—H4···O50.852.183.000 (2)162
O5—H5A···O6A0.822.402.835 (12)114
O5—H5A···O6Av0.822.052.784 (14)148
C6—H6A···O7Avi0.932.443.356 (15)169
C8—H8A···O2iii0.932.313.217 (3)164
C15—H15A···O10.932.522.944 (3)108
C15—H15A···O8A0.932.502.868 (9)104
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x+2, y+1, z; (vi) x+1, y+1, z+1.
π-π interactions (Å, °) top
CgCgαDCCτ
Cg1Cg2i1.383.4524 (14)15.63
Cg2Cg2i0.033.6336 (14)24.54
Symmetry code: (i) -x, 2-y, 1-z. α is dihedral angle between the planes, DCC is the length of the CC vector (centroid–centroid), τ is the angle(s) subtended by the plane normal(s) to CC. Cg1 is the centroid of ring O4, C1, C2, C7–C9 and Cg2 is the centroid of ring C2–C7.
 

Acknowledgements

The author thank the Natural Science Foundation of China (No. 20861001), the Natural Science Foundation of Jiangxi Province (No. 0620007), the Jiangxi Provincial Education Foundation (20060237) and the Gannan Normal University Foundation (No. 200409).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurnow, D. H. & Rossiter, R. C. (1955). Aust. J. Exp. Biol. Med. Sci. 33, 243–248.  CrossRef PubMed CAS Google Scholar
First citationFanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D. & Malluche, H. H. (1998). Osteoporos Int. 8, 274–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFritz, W., Coward, L., Wang, J. & Lamartiniere, C. (1998). Carcinogenesis, 19, 2151–2158.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKaufman, P. B., Duke, J. A., Brielmann, H., Boik, J. & Hoyt, J. E. (1997). J. Altern. Complement Med. 3, 7–12.  CrossRef CAS PubMed Google Scholar
First citationKopacz, M. (1981). Pol. J. Chem. 55, 227–229.  CAS Google Scholar
First citationLamartiniere, C. A. (2000). Am. J. Clin. Nutr. 71, 1705S–1707S.  Web of Science PubMed CAS Google Scholar
First citationPusz, J., Nitka, B. & Wolowiec, S. (2001). Pol. J. Chem. 75, 795–801.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuo, Z. R., Zhang, Z. T. & Zheng, J. B. (2005). Chin. J. Appl. Chem. 22, 1083–1086.  CAS Google Scholar
First citationXie, Y. R., Xiong, R. G., Xue, X., Chen, X. T., Xue, Z. L. & You, X. Z. (2002). Inorg. Chem. 41, 3323–3326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, G. C., Ding, Z., Chen, Z. S., Dong, C., Guo, H. & Chen, B. C. (2006). Transpl. Proc. 38, 3307–3308.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1137-o1138
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds