organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 6,6′-di­cyano-2,2′-bi­pyridine-3,3′-di­carboxyl­ate

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 17 March 2009; accepted 2 April 2009; online 8 April 2009)

In the title compound, C16H10N4O4, the two pyridine rings are twisted by 44.41 (2)° and the ester groups form dihedral angles of 48.77 (4) and 45.75 (2)° with the corresponding pyridine rings. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds and ππ stacking inter­actions between the pyridine rings [centroid-to-centroid distance 3.797 (2) Å].

Related literature

For the synthetic procedures relevant to preparation of the title compound, see: Tichy et al. (1995[Tichy, M., Zhvada, J., Podlaha, J. & Vojffsek, P. (1995). Tetrahedron Asymmetry, 6, 1279-1282.]); Glaup et al. (2005[Glaup, C., Couchet, J. M., Bedel, S., Tisnes, P. & Picard, C. (2005). J. Org. Chem. 70, 2274-2284.]); Heirtzler (1999[Heirtzler, F. R. (1999). Synlett, 8, 1203-1208.])

[Scheme 1]

Experimental

Crystal data
  • C16H10N4O4

  • Mr = 322.28

  • Triclinic, [P \overline 1]

  • a = 8.201 (3) Å

  • b = 10.302 (6) Å

  • c = 10.768 (3) Å

  • α = 109.148 (4)°

  • β = 106.091 (3)°

  • γ = 100.404 (5)°

  • V = 787.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.49 × 0.45 × 0.41 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.960

  • 5613 measured reflections

  • 2845 independent reflections

  • 2391 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.05

  • 2845 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O4i 0.93 2.39 3.222 (3) 149
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Binicotinic acid and its derivatives have been proved to be a kind of multifunctional and flexible ligand in the construction of complexes possessing novel and interesting topological structures. Our interest in these compounds has led us to prepare the title compound. First, we synthesized dimethyl 2,2'-bipyridine-3,3'-dicarboxylate 1,1'-dioxide according to the reported method (Tichy et al. 1995). Second, the incorporation of cyano group onto 6 and 6' positions of the above compound could be readily performed when adopting the literature methods (Glaup et al. 2005; Heirtzler 1999). In this contribution, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one molecule (Fig. 1.). In the crystal structure, the most striking feature of the title compound is the interesting arrangement of the title molecules, which are linked into centrosymmetric dimers by formation of intermolecular C—H···O hydrogen bonds, in which C4—H4A is a donor and O4 is an acceptor (Table 1, Fig. 2). Short π···π contacts between two pyridine rings with centroid-centroid distance of 3.797 (2) Å are observed in the structure.

Related literature top

For the synthetic procedures relevant to preparation of the title compound, see: Tichy et al. (1995); Glaup et al. (2005); Heirtzler (1999)

Experimental top

To an ice-cooled solution of dimethyl 2,2'-bipyridine-3,3'-dicarboxylate 1,1'-dioxide (1.22 g, 4 mmol) and trimethylsilyl cyanide (5.2 ml, 40 mmol) in ca 40 ml dry CH2Cl2 under N2 was carefully added benzoyl chloride (1.9 ml, 17 mmol). After stirring overnight at room temperature, 10% aq Na2CO3 was carefully added to the chilled reaction mixture and it was concentrated at 200 mbar to complete crude product precipitation. This was collected by filtration, washed with water and dried. Purification by silica gel chromatography using 100 ~200 mesh ZCX II eluted by hexane-ethyl acetate (3:1, v/v) gave the yellow solid. The crystalline compound was obtained by slow evaporation of CH2Cl2 solution containing the title compound.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the centrosymmetric dimer; C—H···O hydrogen bonds are indicated with broken lines.
(I) top
Crystal data top
C16H10N4O4Z = 2
Mr = 322.28F(000) = 332
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.201 (3) ÅCell parameters from 2697 reflections
b = 10.302 (6) Åθ = 2.4–25.5°
c = 10.768 (3) ŵ = 0.10 mm1
α = 109.148 (4)°T = 296 K
β = 106.091 (3)°Block, yellow
γ = 100.404 (5)°0.49 × 0.45 × 0.41 mm
V = 787.9 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2845 independent reflections
Radiation source: fine-focus sealed tube2391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.4°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.952, Tmax = 0.960l = 1312
5613 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.140P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2845 reflectionsΔρmax = 0.15 e Å3
218 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C16H10N4O4γ = 100.404 (5)°
Mr = 322.28V = 787.9 (6) Å3
Triclinic, P1Z = 2
a = 8.201 (3) ÅMo Kα radiation
b = 10.302 (6) ŵ = 0.10 mm1
c = 10.768 (3) ÅT = 296 K
α = 109.148 (4)°0.49 × 0.45 × 0.41 mm
β = 106.091 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2845 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2391 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.960Rint = 0.014
5613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2845 reflectionsΔρmin = 0.12 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24082 (14)0.31796 (12)0.50125 (12)0.0430 (3)
N20.10699 (15)0.04177 (12)0.29318 (12)0.0441 (3)
N30.2207 (3)0.64855 (17)0.68504 (19)0.0880 (5)
N40.1464 (3)0.37966 (17)0.06250 (18)0.0918 (6)
O10.21123 (14)0.07920 (12)0.04429 (10)0.0584 (3)
O30.39330 (14)0.18868 (11)0.78250 (10)0.0537 (3)
O40.55513 (13)0.24358 (11)0.65966 (11)0.0589 (3)
O20.41072 (15)0.03548 (12)0.20273 (11)0.0611 (3)
C20.28278 (17)0.22264 (15)0.28064 (14)0.0425 (3)
C10.25460 (16)0.20947 (14)0.39931 (14)0.0392 (3)
C120.30974 (18)0.10132 (15)0.17406 (14)0.0448 (3)
C30.2918 (2)0.35319 (16)0.26803 (16)0.0520 (4)
H3A0.30700.36420.18920.062*
C40.2783 (2)0.46654 (16)0.37267 (17)0.0534 (4)
H4A0.28500.55530.36680.064*
C50.25452 (18)0.44348 (14)0.48638 (16)0.0461 (3)
C110.2373 (2)0.55804 (17)0.59939 (19)0.0585 (4)
C150.2181 (3)0.0415 (2)0.06874 (17)0.0693 (5)
H15A0.14250.04790.15780.104*
H15B0.17820.12880.05720.104*
H15C0.33810.02770.06610.104*
C90.10581 (18)0.19269 (14)0.42201 (15)0.0448 (3)
H9A0.06180.28230.42230.054*
C70.28339 (16)0.05361 (13)0.54006 (13)0.0379 (3)
C60.21790 (16)0.06783 (13)0.41195 (14)0.0382 (3)
C80.22261 (18)0.07911 (14)0.54392 (15)0.0432 (3)
H8A0.26030.09140.62800.052*
C100.05610 (17)0.16976 (14)0.29983 (14)0.0436 (3)
C140.42572 (18)0.17362 (14)0.66546 (14)0.0416 (3)
C130.0581 (2)0.28668 (17)0.16696 (18)0.0595 (4)
C160.5312 (3)0.2948 (2)0.91195 (18)0.0781 (6)
H16D0.49570.29780.99040.117*
H16A0.54970.38780.90770.117*
H16B0.63980.26920.92350.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0426 (6)0.0382 (6)0.0467 (7)0.0097 (5)0.0153 (5)0.0172 (5)
N20.0445 (6)0.0400 (6)0.0427 (7)0.0101 (5)0.0113 (5)0.0153 (5)
N30.1169 (15)0.0572 (10)0.0928 (13)0.0325 (10)0.0510 (11)0.0193 (9)
N40.0980 (13)0.0583 (10)0.0702 (11)0.0005 (9)0.0005 (10)0.0035 (9)
O10.0661 (7)0.0712 (7)0.0413 (6)0.0318 (6)0.0166 (5)0.0232 (5)
O30.0612 (6)0.0478 (6)0.0391 (5)0.0067 (5)0.0151 (5)0.0092 (5)
O40.0460 (6)0.0583 (7)0.0626 (7)0.0006 (5)0.0143 (5)0.0246 (6)
O20.0594 (7)0.0714 (7)0.0530 (6)0.0332 (6)0.0153 (5)0.0225 (6)
C20.0385 (7)0.0450 (8)0.0438 (8)0.0108 (6)0.0120 (6)0.0209 (6)
C10.0361 (7)0.0385 (7)0.0406 (7)0.0093 (5)0.0106 (5)0.0167 (6)
C120.0417 (7)0.0506 (8)0.0437 (8)0.0114 (6)0.0155 (6)0.0220 (7)
C30.0543 (9)0.0559 (9)0.0567 (9)0.0159 (7)0.0229 (7)0.0335 (8)
C40.0556 (9)0.0434 (8)0.0701 (10)0.0160 (7)0.0239 (8)0.0317 (8)
C50.0422 (7)0.0380 (7)0.0571 (9)0.0109 (6)0.0168 (6)0.0191 (7)
C110.0652 (10)0.0415 (9)0.0706 (11)0.0165 (7)0.0269 (8)0.0225 (8)
C150.0746 (11)0.0858 (13)0.0416 (9)0.0346 (10)0.0174 (8)0.0161 (9)
C90.0437 (7)0.0360 (7)0.0567 (9)0.0096 (6)0.0208 (6)0.0200 (7)
C70.0376 (7)0.0376 (7)0.0402 (7)0.0117 (5)0.0162 (6)0.0158 (6)
C60.0380 (7)0.0369 (7)0.0406 (7)0.0111 (5)0.0149 (6)0.0159 (6)
C80.0467 (7)0.0426 (8)0.0448 (8)0.0132 (6)0.0183 (6)0.0216 (6)
C100.0396 (7)0.0370 (7)0.0463 (8)0.0083 (6)0.0119 (6)0.0118 (6)
C140.0433 (7)0.0370 (7)0.0442 (8)0.0128 (6)0.0135 (6)0.0175 (6)
C130.0613 (10)0.0434 (9)0.0568 (10)0.0070 (7)0.0098 (8)0.0136 (8)
C160.0843 (13)0.0666 (11)0.0445 (10)0.0064 (10)0.0046 (9)0.0007 (9)
Geometric parameters (Å, º) top
N1—C11.3328 (17)C4—C51.378 (2)
N1—C51.3430 (18)C4—H4A0.9300
N2—C61.3322 (17)C5—C111.451 (2)
N2—C101.3406 (18)C15—H15A0.9600
N3—C111.136 (2)C15—H15B0.9600
N4—C131.139 (2)C15—H15C0.9600
O1—C121.3252 (17)C9—C101.376 (2)
O1—C151.4495 (19)C9—C81.3786 (19)
O3—C141.3249 (17)C9—H9A0.9300
O3—C161.4483 (19)C7—C81.3864 (19)
O4—C141.1999 (16)C7—C61.4011 (18)
O2—C121.1997 (17)C7—C141.4913 (19)
C2—C31.386 (2)C8—H8A0.9300
C2—C11.4038 (19)C10—C131.447 (2)
C2—C121.492 (2)C16—H16D0.9600
C1—C61.4942 (19)C16—H16A0.9600
C3—C41.378 (2)C16—H16B0.9600
C3—H3A0.9300
C1—N1—C5117.06 (12)H15A—C15—H15C109.5
C6—N2—C10117.28 (12)H15B—C15—H15C109.5
C12—O1—C15116.20 (12)C10—C9—C8118.15 (12)
C14—O3—C16115.67 (13)C10—C9—H9A120.9
C3—C2—C1118.21 (13)C8—C9—H9A120.9
C3—C2—C12120.91 (12)C8—C7—C6118.08 (12)
C1—C2—C12120.83 (12)C8—C7—C14120.67 (12)
N1—C1—C2122.74 (12)C6—C7—C14121.05 (11)
N1—C1—C6115.11 (11)N2—C6—C7122.92 (12)
C2—C1—C6121.83 (12)N2—C6—C1114.08 (11)
O2—C12—O1124.85 (14)C7—C6—C1122.83 (12)
O2—C12—C2124.19 (13)C9—C8—C7119.38 (13)
O1—C12—C2110.93 (12)C9—C8—H8A120.3
C4—C3—C2119.75 (13)C7—C8—H8A120.3
C4—C3—H3A120.1N2—C10—C9124.06 (12)
C2—C3—H3A120.1N2—C10—C13115.18 (13)
C3—C4—C5117.53 (13)C9—C10—C13120.76 (13)
C3—C4—H4A121.2O4—C14—O3125.10 (13)
C5—C4—H4A121.2O4—C14—C7123.42 (13)
N1—C5—C4124.68 (13)O3—C14—C7111.43 (11)
N1—C5—C11115.08 (13)N4—C13—C10179.1 (2)
C4—C5—C11120.23 (13)O3—C16—H16D109.5
N3—C11—C5178.05 (19)O3—C16—H16A109.5
O1—C15—H15A109.5H16D—C16—H16A109.5
O1—C15—H15B109.5O3—C16—H16B109.5
H15A—C15—H15B109.5H16D—C16—H16B109.5
O1—C15—H15C109.5H16A—C16—H16B109.5
C5—N1—C1—C20.20 (19)C8—C7—C6—N23.22 (19)
C5—N1—C1—C6173.30 (11)C14—C7—C6—N2171.65 (12)
C3—C2—C1—N11.7 (2)C8—C7—C6—C1171.66 (11)
C12—C2—C1—N1175.79 (12)C14—C7—C6—C113.47 (18)
C3—C2—C1—C6171.35 (12)N1—C1—C6—N2132.04 (13)
C12—C2—C1—C611.14 (19)C2—C1—C6—N241.53 (17)
C15—O1—C12—O25.1 (2)N1—C1—C6—C743.25 (17)
C15—O1—C12—C2176.63 (12)C2—C1—C6—C7143.18 (13)
C3—C2—C12—O2129.19 (16)C10—C9—C8—C70.99 (19)
C1—C2—C12—O248.3 (2)C6—C7—C8—C92.17 (19)
C3—C2—C12—O149.07 (17)C14—C7—C8—C9172.72 (12)
C1—C2—C12—O1133.48 (13)C6—N2—C10—C92.6 (2)
C1—C2—C3—C41.8 (2)C6—N2—C10—C13177.41 (12)
C12—C2—C3—C4175.66 (13)C8—C9—C10—N23.6 (2)
C2—C3—C4—C50.5 (2)C8—C9—C10—C13176.48 (13)
C1—N1—C5—C41.3 (2)C16—O3—C14—O42.7 (2)
C1—N1—C5—C11179.56 (13)C16—O3—C14—C7175.13 (13)
C3—C4—C5—N11.1 (2)C8—C7—C14—O4130.87 (15)
C3—C4—C5—C11179.31 (14)C6—C7—C14—O443.86 (19)
C10—N2—C6—C70.86 (19)C8—C7—C14—O346.97 (16)
C10—N2—C6—C1174.43 (11)C6—C7—C14—O3138.30 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4i0.932.393.222 (3)149
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H10N4O4
Mr322.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.201 (3), 10.302 (6), 10.768 (3)
α, β, γ (°)109.148 (4), 106.091 (3), 100.404 (5)
V3)787.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.45 × 0.41
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5613, 2845, 2391
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.05
No. of reflections2845
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O4i0.932.393.222 (3)149
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlaup, C., Couchet, J. M., Bedel, S., Tisnes, P. & Picard, C. (2005). J. Org. Chem. 70, 2274–2284.  Web of Science PubMed Google Scholar
First citationHeirtzler, F. R. (1999). Synlett, 8, 1203–1208.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTichy, M., Zhvada, J., Podlaha, J. & Vojffsek, P. (1995). Tetrahedron Asymmetry, 6, 1279–1282.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds