organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3-(2-Methyl­phen­yl)isoquinolin-1-yl]formamide

aThe State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: qbsong@zjut.edu.cn

(Received 21 March 2009; accepted 30 March 2009; online 2 April 2009)

The title compound, C17H14N2O, crystallizes as a cis formamide isomer. The isoquinoline and benzene fragments are nearly perpendicular [dihedral angle = 81.79 (18)°], whereas the formamide group is virtually coplanar with the isoquinoline unit [dihedral angle = 1.66 (15)°]. Inter­molecular N—H⋯O hydrogen bonds link mol­ecules into a centrosymmetric dimer.

Related literature

For the cytotoxic activity of aryl­isoquinolines, see: Cho et al. (2002[Cho, W. J., Kim, E. K., Park, Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. D. & Lee, E. S. (2002). Bioorg. Med. Chem. 10, 2953-2961.], 2003[Cho, W. J., Min, S. Y., Le, T. N. & Kim, T. S. (2003). Bioorg. Med. Chem. Lett. 13, 4451-4454.]). For the synthethic procedures relevant to this work, see: Nunno et al. (2008[Nunno, L. D., Vitale, P. & Scilimati, A. (2008). Tetrahedron, 64, 11198-11204.]); Tovar & Swager (1999[Tovar, J. D. & Swager, T. M. (1999). J. Org. Chem. 64, 6499-6505.]); Cho et al. (2002[Cho, W. J., Kim, E. K., Park, Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. D. & Lee, E. S. (2002). Bioorg. Med. Chem. 10, 2953-2961.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O

  • Mr = 262.30

  • Triclinic, [P \overline 1]

  • a = 5.3898 (14) Å

  • b = 11.166 (3) Å

  • c = 11.899 (3) Å

  • α = 106.139 (3)°

  • β = 93.128 (3)°

  • γ = 103.800 (3)°

  • V = 662.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.36 × 0.23 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.987

  • 4772 measured reflections

  • 2399 independent reflections

  • 1575 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.03

  • 2399 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.10 2.940 (2) 165
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many of the arylisoquinoline derivatives exhibit potent cytotoxic activities against five different human tumor cell lines (Cho et al., 2002, 2003). The title compound, that belongs to arylisoquinolines, has been synthesized to study its cytotoxic activity and its crystal structure is reported here.

Related literature top

For the cytotoxic activity of arylisoquinolines, see: Cho et al. (2002, 2003). For the synthethic procedures relevant to this work, see: Nunno et al. (2008); Tovar & Swager (1999); Cho et al. (2002).

Experimental top

A 2.5 M solution of n-BuLi in hexanes (54.5 mmol) was added to a solution of the diisopropylamine (59.9 mmol) in THF (5 ml) at 273 K under nitrogen atmosphere. After 10 min, the solution of 2-methylbenzonitrile (36.4 mmol) in THF (5 ml) was added dropwise and the obtained brown reaction mixture was stirred for 1 h, then adding the DMF (18.2 mmol), the mixture was stirred for 2 h at room temperature (Cho et al., 2002; Nunno et al., 2008; Tovar et al., 1999). The mixture was subsequently concentrated under reduced pressure giving the crude product. The residue was recrystallized from ethanol. Colorless crystals of the title compound were obtained by slow evaporation of the solvent after 2 days at room temperature(Yield: 73%, m.p. 401–403 K).

Refinement top

All H atoms were placed in calculated posistion with C—H = 0.93 - 0.96 Å, and N—H = 0.86Å and refined in the riding mode aproximation with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing viewed along the a axis. Hydrogen bonds are shown with dashed lines. H atoms are omitted for clarity.
N-[3-(2-Methylphenyl)isoquinolin-1-yl]formamide top
Crystal data top
C17H14N2OZ = 2
Mr = 262.30F(000) = 276
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3898 (14) ÅCell parameters from 1222 reflections
b = 11.166 (3) Åθ = 3.0–26.0°
c = 11.899 (3) ŵ = 0.08 mm1
α = 106.139 (3)°T = 296 K
β = 93.128 (3)°Block, colourless
γ = 103.800 (3)°0.36 × 0.23 × 0.16 mm
V = 662.4 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2399 independent reflections
Radiation source: fine-focus sealed tube1575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 3.0°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.971, Tmax = 0.987l = 1414
4772 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.0805P]
where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H14N2Oγ = 103.800 (3)°
Mr = 262.30V = 662.4 (3) Å3
Triclinic, P1Z = 2
a = 5.3898 (14) ÅMo Kα radiation
b = 11.166 (3) ŵ = 0.08 mm1
c = 11.899 (3) ÅT = 296 K
α = 106.139 (3)°0.36 × 0.23 × 0.16 mm
β = 93.128 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1575 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.987Rint = 0.017
4772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
2399 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2507 (3)0.67650 (17)0.71903 (14)0.0446 (4)
C20.1010 (3)0.74496 (17)0.67117 (15)0.0444 (4)
C40.0799 (4)0.8081 (2)0.51425 (18)0.0651 (6)
H40.10150.80320.43490.078*
C50.1976 (4)0.8866 (2)0.59439 (18)0.0627 (6)
H50.29590.93390.56810.075*
C60.1697 (4)0.8945 (2)0.71022 (18)0.0592 (5)
H60.25040.94650.76270.071*
C70.0188 (3)0.82420 (18)0.75214 (15)0.0481 (5)
C80.0201 (4)0.83123 (19)0.87248 (16)0.0550 (5)
H80.05860.88200.92720.066*
C90.1717 (4)0.76428 (18)0.90878 (15)0.0485 (5)
C100.5217 (4)0.52789 (19)0.67853 (16)0.0551 (5)
H100.54310.53460.75830.066*
C110.2307 (4)0.77304 (19)1.03607 (15)0.0479 (5)
C120.0620 (4)0.69894 (19)1.09041 (16)0.0531 (5)
C130.1360 (4)0.7069 (2)1.20679 (17)0.0623 (6)
H130.02610.65671.24370.075*
C140.3655 (4)0.7863 (2)1.26835 (18)0.0636 (6)
H140.41050.78891.34570.076*
C150.5290 (4)0.8620 (2)1.21612 (18)0.0662 (6)
H150.68310.91781.25840.079*
C160.4630 (4)0.8548 (2)1.09957 (17)0.0600 (6)
H160.57510.90511.06350.072*
C170.1907 (4)0.6097 (2)1.0258 (2)0.0735 (6)
H17A0.30100.65961.00760.110*
H17B0.27100.56021.07460.110*
H17C0.16170.55240.95410.110*
C180.0666 (4)0.7385 (2)0.55094 (16)0.0558 (5)
H180.14410.68660.49660.067*
N10.2872 (3)0.68582 (15)0.83158 (12)0.0492 (4)
N20.3716 (3)0.59354 (15)0.64362 (12)0.0517 (4)
H20.34690.58440.56940.062*
O10.6325 (3)0.45974 (14)0.61283 (11)0.0655 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0521 (11)0.0470 (11)0.0386 (10)0.0214 (9)0.0112 (8)0.0112 (8)
C20.0477 (10)0.0478 (11)0.0410 (10)0.0187 (9)0.0078 (8)0.0134 (8)
C40.0777 (15)0.0831 (16)0.0477 (11)0.0425 (13)0.0049 (10)0.0231 (11)
C50.0683 (13)0.0731 (15)0.0596 (12)0.0387 (12)0.0033 (10)0.0241 (11)
C60.0639 (13)0.0663 (14)0.0569 (12)0.0364 (11)0.0094 (10)0.0168 (10)
C70.0492 (11)0.0519 (12)0.0466 (10)0.0206 (9)0.0068 (8)0.0142 (9)
C80.0668 (13)0.0630 (13)0.0426 (10)0.0340 (11)0.0147 (9)0.0119 (9)
C90.0555 (11)0.0555 (12)0.0384 (10)0.0238 (10)0.0114 (8)0.0116 (9)
C100.0755 (14)0.0638 (13)0.0380 (10)0.0378 (12)0.0107 (9)0.0170 (9)
C110.0579 (12)0.0535 (11)0.0383 (9)0.0285 (10)0.0111 (9)0.0104 (9)
C120.0595 (12)0.0560 (12)0.0463 (11)0.0227 (10)0.0070 (9)0.0132 (9)
C130.0754 (15)0.0728 (15)0.0434 (11)0.0228 (12)0.0084 (10)0.0220 (10)
C140.0760 (15)0.0762 (15)0.0417 (11)0.0293 (13)0.0017 (11)0.0157 (11)
C150.0628 (13)0.0766 (15)0.0529 (12)0.0210 (12)0.0034 (10)0.0094 (11)
C160.0576 (13)0.0731 (14)0.0484 (11)0.0181 (11)0.0083 (10)0.0159 (10)
C170.0690 (14)0.0802 (16)0.0671 (14)0.0124 (13)0.0022 (11)0.0239 (12)
C180.0651 (13)0.0687 (14)0.0419 (10)0.0332 (11)0.0089 (9)0.0163 (10)
N10.0622 (10)0.0564 (10)0.0363 (8)0.0285 (8)0.0113 (7)0.0140 (7)
N20.0707 (11)0.0640 (10)0.0326 (8)0.0390 (9)0.0089 (7)0.0153 (7)
O10.0930 (11)0.0775 (10)0.0454 (7)0.0555 (9)0.0183 (7)0.0194 (7)
Geometric parameters (Å, º) top
C1—N11.314 (2)C10—N21.334 (2)
C1—N21.406 (2)C10—H100.9300
C1—C21.430 (2)C11—C121.390 (3)
C2—C181.412 (2)C11—C161.393 (3)
C2—C71.412 (2)C12—C131.393 (3)
C4—C181.365 (3)C12—C171.500 (3)
C4—C51.395 (3)C13—C141.367 (3)
C4—H40.9300C13—H130.9300
C5—C61.354 (3)C14—C151.368 (3)
C5—H50.9300C14—H140.9300
C6—C71.416 (3)C15—C161.388 (3)
C6—H60.9300C15—H150.9300
C7—C81.413 (2)C16—H160.9300
C8—C91.358 (3)C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C9—N11.369 (2)C17—H17C0.9600
C9—C111.502 (2)C18—H180.9300
C10—O11.218 (2)N2—H20.8600
N1—C1—N2116.00 (15)C16—C11—C9118.94 (17)
N1—C1—C2124.34 (16)C11—C12—C13118.20 (19)
N2—C1—C2119.66 (15)C11—C12—C17121.62 (17)
C18—C2—C7118.91 (16)C13—C12—C17120.16 (19)
C18—C2—C1124.80 (16)C14—C13—C12121.9 (2)
C7—C2—C1116.28 (15)C14—C13—H13119.0
C18—C4—C5120.80 (19)C12—C13—H13119.0
C18—C4—H4119.6C13—C14—C15120.03 (19)
C5—C4—H4119.6C13—C14—H14120.0
C6—C5—C4120.51 (18)C15—C14—H14120.0
C6—C5—H5119.7C14—C15—C16119.5 (2)
C4—C5—H5119.7C14—C15—H15120.2
C5—C6—C7120.56 (18)C16—C15—H15120.2
C5—C6—H6119.7C15—C16—C11120.7 (2)
C7—C6—H6119.7C15—C16—H16119.7
C2—C7—C8118.35 (16)C11—C16—H16119.7
C2—C7—C6119.00 (16)C12—C17—H17A109.5
C8—C7—C6122.64 (17)C12—C17—H17B109.5
C9—C8—C7120.43 (17)H17A—C17—H17B109.5
C9—C8—H8119.8C12—C17—H17C109.5
C7—C8—H8119.8H17A—C17—H17C109.5
C8—C9—N1122.13 (16)H17B—C17—H17C109.5
C8—C9—C11122.85 (16)C4—C18—C2120.22 (18)
N1—C9—C11115.00 (15)C4—C18—H18119.9
O1—C10—N2124.36 (17)C2—C18—H18119.9
O1—C10—H10117.8C1—N1—C9118.43 (15)
N2—C10—H10117.8C10—N2—C1124.96 (15)
C12—C11—C16119.63 (17)C10—N2—H2117.5
C12—C11—C9121.41 (17)C1—N2—H2117.5
N1—C1—C2—C18178.11 (18)C9—C11—C12—C13176.52 (17)
N2—C1—C2—C181.4 (3)C16—C11—C12—C17179.84 (18)
N1—C1—C2—C71.8 (3)C9—C11—C12—C171.9 (3)
N2—C1—C2—C7178.68 (16)C11—C12—C13—C141.1 (3)
C18—C4—C5—C60.4 (3)C17—C12—C13—C14179.6 (2)
C4—C5—C6—C70.6 (3)C12—C13—C14—C150.6 (3)
C18—C2—C7—C8179.13 (18)C13—C14—C15—C161.7 (3)
C1—C2—C7—C80.8 (3)C14—C15—C16—C111.0 (3)
C18—C2—C7—C60.1 (3)C12—C11—C16—C150.7 (3)
C1—C2—C7—C6179.99 (17)C9—C11—C16—C15177.58 (18)
C5—C6—C7—C20.4 (3)C5—C4—C18—C20.0 (3)
C5—C6—C7—C8178.7 (2)C7—C2—C18—C40.1 (3)
C2—C7—C8—C90.8 (3)C1—C2—C18—C4179.81 (19)
C6—C7—C8—C9178.41 (19)N2—C1—N1—C9179.35 (16)
C7—C8—C9—N11.5 (3)C2—C1—N1—C91.1 (3)
C7—C8—C9—C11176.90 (18)C8—C9—N1—C10.6 (3)
C8—C9—C11—C1283.5 (3)C11—C9—N1—C1177.95 (17)
N1—C9—C11—C1298.0 (2)O1—C10—N2—C1177.35 (19)
C8—C9—C11—C1698.3 (2)N1—C1—N2—C101.6 (3)
N1—C9—C11—C1680.3 (2)C2—C1—N2—C10177.92 (17)
C16—C11—C12—C131.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.102.940 (2)165
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H14N2O
Mr262.30
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.3898 (14), 11.166 (3), 11.899 (3)
α, β, γ (°)106.139 (3), 93.128 (3), 103.800 (3)
V3)662.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.23 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.971, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4772, 2399, 1575
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.03
No. of reflections2399
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.102.940 (2)165.0
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Key Discipline of Applied Chemistry, Zhejiang Province, and the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, People's Republic of China.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, W. J., Kim, E. K., Park, Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. D. & Lee, E. S. (2002). Bioorg. Med. Chem. 10, 2953–2961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCho, W. J., Min, S. Y., Le, T. N. & Kim, T. S. (2003). Bioorg. Med. Chem. Lett. 13, 4451–4454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNunno, L. D., Vitale, P. & Scilimati, A. (2008). Tetrahedron, 64, 11198–11204.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTovar, J. D. & Swager, T. M. (1999). J. Org. Chem. 64, 6499–6505.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds