organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1141

3-[(3,5-Di-tert-butyl-2-hy­droxy­benzyl­­idene)methyl­ene­amino]benzo­nitrile

aCollege of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
*Correspondence e-mail: xiongjp@mail.buct.edu.cn

(Received 12 March 2009; accepted 21 April 2009; online 30 April 2009)

The mol­ecule of the title compound, C22H26N2O, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the planes of the two aromatic rings is 26.30 (15)°. There is a strong intra­molecular O—H⋯N hydrogen bond between the imine and hydroxyl groups.

Related literature

For general background on Schiff base coordination complexes, see: Weber et al. (2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]); Chen et al. (2008[Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). For double-bond-length data, see: Elmah et al. (1999[Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N2O

  • Mr = 334.45

  • Monoclinic, P 21 /c

  • a = 14.897 (3) Å

  • b = 15.684 (3) Å

  • c = 8.8581 (18) Å

  • β = 97.86 (3)°

  • V = 2050.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.903, Tmax = 1.000 (expected range = 0.891–0.987)

  • 10436 measured reflections

  • 3701 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.189

  • S = 0.99

  • 3701 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 1.03 (5) 1.68 (5) 2.612 (3) 149 (4)

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber, et al., 2007), catalysis (Chen, et al., 2008) and biological process (May, et al.,2004). Our group is interested in the synthesis and preparation of Schiff base. Here, we report the synthesis and crystal structure of the title compound, (I).

Fig. 1 shows ORTEP plots of the title compounds. The dihedral angle between the mean planes of the two aromatic rings is 26.30 (0.15) ° showing that the Schiff-base ligand adopts a non-planar conformation. As expected, the molecule displays a trans configuration about the central C8=N2 function bond. The C8=N2 bond length of 1.286 (3)Å indicates a high degree of double-bond character comparable with the corresponding bond lengths in other Schiff bases (1.280 (2) Å; Elmah et al., 1999). A strong intramolecular O–H···N hydrogen bond interaction is observed in the molecular structure.

Related literature top

For general background on Schiff base coordination complexes, see: Weber et al. (2007); Chen et al. (2008); May et al. (2004). For double-bond-length data, see: Elmah et al. (1999).

Experimental top

All chemicals were obtained from commercial sources and used without further purification. 3-aminobenzonitrile (0.59 g, 5 mmol) and 3,5-di-t-butyl-2-hydroxybenzaldehyde (1.05 g, 4.5 mmol)were dissolved in ethanol (20 ml). The mixture was heated to reflux for 7 h, then cooled to room temperature the solution was filtered and after two weeks yellow crystals suitable for X-ray diffraction study were obtained. Yield: 1.27 g, 85%.

Refinement top

All the H atoms were found in the difference Fourier maps. The position of H1A is refined with the bond constraint O1—H1A = 0.82 Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-[(3,5-Di-tert-butyl-2-hydroxybenzylidene)methyleneamino]benzonitrile top
Crystal data top
C22H26N2OF(000) = 720
Mr = 334.45Dx = 1.084 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7104 reflections
a = 14.897 (3) Åθ = 3.0–25.2°
b = 15.684 (3) ŵ = 0.07 mm1
c = 8.8581 (18) ÅT = 293 K
β = 97.86 (3)°Prism, colorless
V = 2050.2 (7) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3701 independent reflections
Radiation source: fine-focus sealed tube1746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 13.6612 pixels mm-1θmax = 25.2°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1418
Tmin = 0.903, Tmax = 1.000l = 910
10436 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0819P)2]
where P = (Fo2 + 2Fc2)/3
3701 reflections(Δ/σ)max = 0.004
230 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H26N2OV = 2050.2 (7) Å3
Mr = 334.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.897 (3) ŵ = 0.07 mm1
b = 15.684 (3) ÅT = 293 K
c = 8.8581 (18) Å0.2 × 0.2 × 0.2 mm
β = 97.86 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3701 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1746 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 1.000Rint = 0.079
10436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.14 e Å3
3701 reflectionsΔρmin = 0.15 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66011 (15)0.15473 (13)0.7833 (2)0.0653 (6)
C100.72011 (19)0.08905 (18)0.8159 (3)0.0505 (8)
N20.59185 (16)0.11626 (15)1.0309 (3)0.0559 (7)
C110.78194 (18)0.06970 (18)0.7144 (3)0.0492 (8)
C90.71779 (18)0.04083 (18)0.9488 (3)0.0490 (7)
C140.77740 (19)0.02806 (19)0.9807 (3)0.0566 (8)
H14A0.77550.05931.06950.068*
C120.83890 (19)0.00022 (19)0.7535 (4)0.0561 (8)
H12A0.88030.01340.68760.067*
C10.52589 (19)0.1264 (2)1.1329 (3)0.0520 (8)
C80.6525 (2)0.05759 (19)1.0535 (3)0.0534 (8)
H8A0.65470.02431.14070.064*
C130.83925 (19)0.05108 (18)0.8837 (4)0.0545 (8)
C20.48863 (19)0.20659 (19)1.1417 (3)0.0563 (8)
H2B0.50780.25131.08500.068*
C30.4222 (2)0.2205 (2)1.2357 (4)0.0610 (9)
C40.3933 (2)0.1543 (3)1.3211 (4)0.0703 (10)
H4A0.34890.16361.38340.084*
C60.49656 (19)0.0600 (2)1.2181 (4)0.0608 (9)
H6A0.52080.00571.21180.073*
C70.3820 (2)0.3038 (3)1.2386 (4)0.0792 (11)
C50.4310 (2)0.0748 (2)1.3128 (4)0.0710 (10)
H5A0.41260.03041.37100.085*
C150.9008 (2)0.1292 (2)0.9173 (4)0.0705 (10)
C170.8421 (3)0.2099 (2)0.9016 (6)0.1168 (16)
H17A0.81210.21450.79890.175*
H17B0.79770.20680.97040.175*
H17C0.87980.25900.92570.175*
C160.9728 (3)0.1349 (3)0.8100 (7)0.145 (2)
H16A0.94370.13770.70650.217*
H16B1.00880.18510.83320.217*
H16C1.01100.08540.82290.217*
N10.3495 (3)0.3705 (2)1.2362 (5)0.1135 (13)
C190.7872 (2)0.1226 (2)0.5690 (4)0.0619 (9)
C200.6964 (2)0.1167 (2)0.4636 (4)0.0807 (11)
H20A0.68390.05810.43680.121*
H20B0.69980.14930.37280.121*
H20C0.64880.13880.51530.121*
C210.8071 (2)0.2170 (2)0.6111 (4)0.0871 (12)
H21A0.76090.23860.66650.131*
H21B0.80790.24970.51980.131*
H21C0.86500.22120.67330.131*
C180.9497 (3)0.1256 (2)1.0812 (5)0.1196 (17)
H18A0.90580.12211.15080.179*
H18B0.98820.07631.09310.179*
H18C0.98570.17611.10210.179*
C220.8623 (3)0.0909 (3)0.4806 (5)0.1176 (17)
H22A0.85150.03220.45290.176*
H22B0.91990.09600.54340.176*
H22C0.86250.12450.39010.176*
H1A0.618 (3)0.155 (3)0.865 (6)0.166 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0747 (15)0.0676 (14)0.0544 (15)0.0222 (12)0.0120 (12)0.0117 (12)
C100.0533 (18)0.0542 (18)0.0421 (19)0.0053 (16)0.0001 (15)0.0018 (15)
N20.0599 (16)0.0620 (16)0.0468 (17)0.0058 (14)0.0115 (13)0.0027 (13)
C110.0463 (17)0.0592 (19)0.0423 (19)0.0004 (16)0.0064 (14)0.0020 (15)
C90.0556 (18)0.0545 (18)0.0364 (18)0.0040 (16)0.0047 (14)0.0008 (15)
C140.064 (2)0.0587 (19)0.0467 (19)0.0012 (17)0.0041 (16)0.0110 (16)
C120.0492 (18)0.065 (2)0.056 (2)0.0056 (16)0.0124 (15)0.0055 (17)
C10.0488 (17)0.064 (2)0.0428 (19)0.0021 (17)0.0063 (15)0.0084 (16)
C80.062 (2)0.0577 (19)0.0395 (18)0.0017 (17)0.0056 (15)0.0024 (15)
C130.0469 (17)0.0579 (19)0.058 (2)0.0023 (16)0.0054 (15)0.0025 (17)
C20.058 (2)0.060 (2)0.052 (2)0.0047 (17)0.0137 (16)0.0084 (16)
C30.058 (2)0.068 (2)0.058 (2)0.0018 (18)0.0112 (17)0.0182 (19)
C40.055 (2)0.095 (3)0.065 (2)0.011 (2)0.0217 (18)0.013 (2)
C60.057 (2)0.063 (2)0.062 (2)0.0070 (17)0.0070 (17)0.0004 (18)
C70.081 (3)0.077 (3)0.085 (3)0.002 (2)0.028 (2)0.023 (2)
C50.064 (2)0.083 (3)0.069 (2)0.013 (2)0.0186 (19)0.003 (2)
C150.059 (2)0.065 (2)0.085 (3)0.0121 (18)0.0026 (19)0.0019 (19)
C170.108 (3)0.067 (3)0.166 (5)0.005 (2)0.015 (3)0.008 (3)
C160.131 (4)0.136 (4)0.184 (5)0.076 (3)0.080 (4)0.044 (4)
N10.120 (3)0.088 (2)0.140 (4)0.008 (2)0.046 (3)0.034 (2)
C190.061 (2)0.075 (2)0.051 (2)0.0047 (18)0.0139 (17)0.0107 (18)
C200.085 (2)0.105 (3)0.049 (2)0.011 (2)0.0005 (19)0.007 (2)
C210.093 (3)0.095 (3)0.070 (3)0.032 (2)0.001 (2)0.023 (2)
C180.105 (3)0.099 (3)0.138 (4)0.030 (3)0.043 (3)0.012 (3)
C220.115 (3)0.160 (4)0.090 (3)0.033 (3)0.061 (3)0.045 (3)
Geometric parameters (Å, º) top
O1—C101.369 (3)C7—N11.152 (4)
O1—H1A1.03 (5)C5—H5A0.9300
C10—C91.404 (4)C15—C171.535 (4)
C10—C111.405 (4)C15—C161.530 (5)
N2—C81.286 (3)C15—C181.533 (5)
N2—C11.431 (3)C17—H17A0.9600
C11—C121.395 (4)C17—H17B0.9600
C11—C191.543 (4)C17—H17C0.9600
C9—C141.403 (4)C16—H16A0.9600
C9—C81.456 (4)C16—H16B0.9600
C14—C131.391 (4)C16—H16C0.9600
C14—H14A0.9300C19—C221.534 (4)
C12—C131.406 (4)C19—C201.537 (4)
C12—H12A0.9300C19—C211.545 (4)
C1—C21.382 (4)C20—H20A0.9600
C1—C61.391 (4)C20—H20B0.9600
C8—H8A0.9300C20—H20C0.9600
C13—C151.534 (4)C21—H21A0.9600
C2—C31.396 (4)C21—H21B0.9600
C2—H2B0.9300C21—H21C0.9600
C3—C41.387 (4)C18—H18A0.9600
C3—C71.438 (5)C18—H18B0.9600
C4—C51.374 (4)C18—H18C0.9600
C4—H4A0.9300C22—H22A0.9600
C6—C51.390 (4)C22—H22B0.9600
C6—H6A0.9300C22—H22C0.9600
C10—O1—H1A108 (3)C17—C15—C13108.9 (3)
O1—C10—C9119.5 (3)C16—C15—C13112.2 (3)
O1—C10—C11119.6 (3)C18—C15—C13110.4 (3)
C9—C10—C11120.9 (3)C15—C17—H17A109.5
C8—N2—C1120.6 (3)C15—C17—H17B109.5
C12—C11—C10116.1 (3)H17A—C17—H17B109.5
C12—C11—C19121.9 (3)C15—C17—H17C109.5
C10—C11—C19122.0 (3)H17A—C17—H17C109.5
C10—C9—C14119.8 (3)H17B—C17—H17C109.5
C10—C9—C8122.1 (3)C15—C16—H16A109.5
C14—C9—C8118.1 (3)C15—C16—H16B109.5
C13—C14—C9122.0 (3)H16A—C16—H16B109.5
C13—C14—H14A119.0C15—C16—H16C109.5
C9—C14—H14A119.0H16A—C16—H16C109.5
C11—C12—C13125.8 (3)H16B—C16—H16C109.5
C11—C12—H12A117.1C22—C19—C20108.2 (3)
C13—C12—H12A117.1C22—C19—C21107.7 (3)
C2—C1—C6119.5 (3)C20—C19—C21109.2 (3)
C2—C1—N2116.9 (3)C22—C19—C11112.0 (3)
C6—C1—N2123.6 (3)C20—C19—C11109.5 (2)
N2—C8—C9123.1 (3)C21—C19—C11110.1 (3)
N2—C8—H8A118.4C19—C20—H20A109.5
C9—C8—H8A118.4C19—C20—H20B109.5
C14—C13—C12115.5 (3)H20A—C20—H20B109.5
C14—C13—C15121.1 (3)C19—C20—H20C109.5
C12—C13—C15123.4 (3)H20A—C20—H20C109.5
C1—C2—C3119.9 (3)H20B—C20—H20C109.5
C1—C2—H2B120.0C19—C21—H21A109.5
C3—C2—H2B120.0C19—C21—H21B109.5
C4—C3—C2120.4 (3)H21A—C21—H21B109.5
C4—C3—C7120.7 (3)C19—C21—H21C109.5
C2—C3—C7118.9 (3)H21A—C21—H21C109.5
C5—C4—C3119.4 (3)H21B—C21—H21C109.5
C5—C4—H4A120.3C15—C18—H18A109.5
C3—C4—H4A120.3C15—C18—H18B109.5
C5—C6—C1120.1 (3)H18A—C18—H18B109.5
C5—C6—H6A119.9C15—C18—H18C109.5
C1—C6—H6A119.9H18A—C18—H18C109.5
N1—C7—C3178.0 (4)H18B—C18—H18C109.5
C4—C5—C6120.6 (3)C19—C22—H22A109.5
C4—C5—H5A119.7C19—C22—H22B109.5
C6—C5—H5A119.7H22A—C22—H22B109.5
C17—C15—C16109.5 (3)C19—C22—H22C109.5
C17—C15—C18107.9 (3)H22A—C22—H22C109.5
C16—C15—C18107.9 (3)H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N21.03 (5)1.68 (5)2.612 (3)149 (4)

Experimental details

Crystal data
Chemical formulaC22H26N2O
Mr334.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.897 (3), 15.684 (3), 8.8581 (18)
β (°) 97.86 (3)
V3)2050.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.903, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10436, 3701, 1746
Rint0.079
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.189, 0.99
No. of reflections3701
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N21.03 (5)1.68 (5)2.612 (3)149 (4)
 

References

First citationChen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationElmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234.  Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1141
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds