organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1086

Bis(3-nitro­anilinium) sulfate

aDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: baofengstorm@126.com

(Received 14 February 2009; accepted 13 April 2009; online 22 April 2009)

In the title salt, 2C6H7N2O2+·SO42−, all the non-H atoms of both cations and the S atom and two O atoms of the anion lie on a crystallographic mirror plane. In the crystal structure, N—H⋯O and C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For a related structure, see: Bao et al. (2006[Bao, F., Chen, Y. & Ng, S. W. (2006). Acta Cryst. E62, o4186-o4187.]). For background, see: Barclay & Hoskins (1965[Barclay, G. A. & Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991.]); Elmali et al. (1997[Elmali, A., Elerman, Y., Svoboda, I., Fuess, H., Griesar, K. & Haase, W. (1997). Z. Naturforsch. Teil B, 52, 157-161.]); Tahir et al. (1996[Tahir, M. N., Ülkü, D., Atakol, O. & Akay, A. (1996). Acta Cryst. C52, 2676-2678.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H7N2O2+·SO42−

  • Mr = 374.33

  • Orthorhombic, P b c m

  • a = 7.9177 (16) Å

  • b = 30.843 (6) Å

  • c = 6.3924 (13) Å

  • V = 1561.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 290 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.979

  • 12364 measured reflections

  • 1845 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.144

  • S = 1.17

  • 1845 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.89 2.37 3.226 (4) 161
N1—H1B⋯O5 0.89 2.30 2.987 (4) 134
N1—H1B⋯O5ii 0.89 2.39 2.928 (3) 119
N3—H3A⋯O7iii 0.89 1.86 2.755 (4) 176
N3—H3B⋯O5iv 0.94 1.84 2.756 (3) 164
C4—H4⋯O4v 0.93 2.48 3.229 (5) 138
C6—H6⋯O6i 0.93 2.29 3.139 (4) 151
C8—H8⋯O3vi 0.93 2.45 3.165 (5) 133
C10—H10⋯O2vii 0.93 2.51 3.184 (5) 130
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) -x, -y, -z+1; (iv) [x, y, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z; (vii) [x-1, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The Schiff base that is derived by condensing acetylacetone and a substituted aniline rearranges itself upon being deprotonated in order to chelate to copper (Barclay & Hoskins, 1965; Elmali et al., 1997; Tahir et al., 1996). In our hands, in the reaction of the 3-nitro substituted ligand with copper sulfate, the ligand is cleaved (probably to starting reactants). A analogous structure had been reported by our group (Bao et al., 2006).

In the title compound, (I), the asymmetric unit consists of half sulfate anion and two halves of 3-nitroaniline cations (Fig. 1). H1B, H3B and O5 atoms were symmetry-related by a mirror and all the other atoms lie on the mirror. No other abnormal bond lengths and angles deserve discussion.

By a combination of N—H···O and C—H···O hydrogen bonds (Table 1), the ions in (I) are linked into a three-dimensional network. Except for above mentioned, no other interactions, such as ππ, C—H···π etc., have been observed.

Related literature top

For a related structure, see: Bao et al. (2006). For background, see: Barclay & Hoskins (1965); Elmali et al. (1997); Tahir et al. (1996).

Experimental top

Acetylacetone (3 ml, 0.03 mol), 3-nitroaniline (4.14 g, 0.03 mol) and a catalytic amount of p-toluenesulfonic acid were dissolved in toluene (30 ml). The mixture was refluxed for 6 h and the water was separated azeotropically in a Dean–Stark apparatus. The solvent was removed and the product purified by recrystallization from hexane to yield 4-(3-nitrophenylamino)-3-penten-2-one in 80% yield. To a chloroform (5 ml) solution of the ligand (50 mg, 0.23 mmol) was added triethylamine (0.32 ml, 0.23 mmol) and copper sulfate (37 mg, 0.23 mmol) dissolved in ethanol (25 ml). The resulting brown mixture was filtered and the solution set aside for several days to allow for the formation of colourless blocks of (I); copper was not incorporated into the final product. CH&N elemental analysis calculated for C12H15N4O8S: C 38.40, H 4.03, N 14.39%; found: C 38.52, H 4.01, N 14.26%.

Refinement top

H atoms bonded to carbon atoms were placed in idealised positions with C–H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(C). Hydrogen atoms bonded to N1 and N3 were firstly found from the difference maps and refined with the constraint of N—H = 0.86 (2)Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Vew of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius and the hydrogen bond is indicated by a double-dashed line.
Bis(3-nitroanilinium) sulfate top
Crystal data top
2C6H7N2O2+·SO42F(000) = 776
Mr = 374.33Dx = 1.593 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 6890 reflections
a = 7.9177 (16) Åθ = 2.6–28.2°
b = 30.843 (6) ŵ = 0.26 mm1
c = 6.3924 (13) ÅT = 290 K
V = 1561.1 (5) Å3Block, colorless
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
1845 independent reflections
Radiation source: fine-focus sealed tube1735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.959, Tmax = 0.979k = 3938
12364 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0402P)2 + 2.0956P]
where P = (Fo2 + 2Fc2)/3
1845 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
2C6H7N2O2+·SO42V = 1561.1 (5) Å3
Mr = 374.33Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 7.9177 (16) ŵ = 0.26 mm1
b = 30.843 (6) ÅT = 290 K
c = 6.3924 (13) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
1845 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1735 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.027
12364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.17Δρmax = 0.36 e Å3
1845 reflectionsΔρmin = 0.44 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6618 (4)0.09205 (10)0.25000.0299 (7)
C20.5199 (4)0.11814 (12)0.25000.0356 (8)
H20.41260.10590.25000.043*
C30.5394 (5)0.16246 (12)0.25000.0448 (10)
H30.44440.18020.25000.054*
C40.6984 (5)0.18093 (11)0.25000.0434 (9)
H40.71200.21090.25000.052*
C50.8355 (4)0.15378 (11)0.25000.0344 (8)
C60.8229 (4)0.10938 (11)0.25000.0321 (7)
H60.91820.09180.25000.039*
N10.6439 (4)0.04502 (9)0.25000.0467 (9)
H1A0.74560.03270.25000.056*
H1B0.58740.03680.13630.056*
N21.0069 (4)0.17275 (11)0.25000.0446 (8)
O11.1266 (3)0.14857 (10)0.25000.0581 (9)
O21.0177 (4)0.21214 (10)0.25000.0713 (11)
C70.1526 (4)0.10811 (11)0.75000.0313 (7)
C80.0172 (5)0.13591 (12)0.75000.0376 (8)
H80.09220.12500.75000.045*
C90.0437 (5)0.18007 (13)0.75000.0470 (10)
H90.04820.19890.75000.056*
C100.2057 (5)0.19658 (12)0.75000.0472 (10)
H100.22460.22630.75000.057*
C110.3388 (4)0.16774 (12)0.75000.0392 (9)
C120.3170 (4)0.12348 (11)0.75000.0346 (8)
H120.40880.10470.75000.042*
N30.1249 (4)0.06160 (9)0.75000.0367 (7)
H3A0.01420.05580.75000.044*
H3B0.17120.05020.62680.044*
N40.5129 (5)0.18455 (13)0.75000.0555 (10)
O30.6279 (4)0.15917 (12)0.75000.0699 (10)
O40.5318 (5)0.22352 (11)0.75000.0996 (16)
S10.21460 (11)0.00780 (3)0.25000.0338 (3)
O50.3083 (3)0.02283 (8)0.0650 (4)0.0644 (7)
O60.0436 (4)0.02484 (9)0.25000.0573 (9)
O70.2120 (4)0.03918 (9)0.25000.0680 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (16)0.0263 (15)0.0322 (17)0.0005 (12)0.0000.000
C20.0252 (16)0.0411 (19)0.041 (2)0.0013 (14)0.0000.000
C30.0329 (19)0.039 (2)0.063 (3)0.0096 (15)0.0000.000
C40.042 (2)0.0265 (16)0.061 (3)0.0013 (15)0.0000.000
C50.0283 (17)0.0353 (18)0.040 (2)0.0065 (13)0.0000.000
C60.0250 (15)0.0310 (16)0.0405 (19)0.0042 (12)0.0000.000
N10.0395 (17)0.0301 (15)0.071 (2)0.0051 (13)0.0000.000
N20.0356 (17)0.0482 (19)0.050 (2)0.0131 (14)0.0000.000
O10.0284 (14)0.069 (2)0.077 (2)0.0047 (13)0.0000.000
O20.062 (2)0.0448 (17)0.107 (3)0.0264 (15)0.0000.000
C70.0336 (17)0.0297 (16)0.0305 (17)0.0010 (13)0.0000.000
C80.0302 (17)0.0420 (19)0.041 (2)0.0013 (14)0.0000.000
C90.039 (2)0.040 (2)0.061 (3)0.0097 (16)0.0000.000
C100.052 (2)0.0294 (18)0.060 (3)0.0031 (16)0.0000.000
C110.0315 (18)0.042 (2)0.044 (2)0.0084 (15)0.0000.000
C120.0292 (16)0.0328 (17)0.042 (2)0.0026 (13)0.0000.000
N30.0402 (16)0.0315 (15)0.0384 (17)0.0045 (12)0.0000.000
N40.043 (2)0.060 (2)0.063 (2)0.0206 (18)0.0000.000
O30.0298 (15)0.094 (3)0.086 (3)0.0086 (16)0.0000.000
O40.074 (3)0.057 (2)0.168 (5)0.0364 (19)0.0000.000
S10.0348 (5)0.0278 (4)0.0386 (5)0.0022 (3)0.0000.000
O50.0498 (12)0.0914 (16)0.0522 (14)0.0095 (11)0.0027 (11)0.0215 (12)
O60.0408 (16)0.0383 (14)0.093 (3)0.0055 (12)0.0000.000
O70.0454 (16)0.0304 (14)0.128 (3)0.0001 (12)0.0000.000
Geometric parameters (Å, º) top
C1—C21.381 (5)C7—N31.451 (4)
C1—C61.383 (4)C8—C91.378 (5)
C1—N11.458 (4)C8—H80.9300
C2—C31.376 (5)C9—C101.380 (6)
C2—H20.9300C9—H90.9300
C3—C41.382 (5)C10—C111.379 (5)
C3—H30.9300C10—H100.9300
C4—C51.371 (5)C11—C121.376 (5)
C4—H40.9300C11—N41.472 (5)
C5—C61.373 (5)C12—H120.9300
C5—N21.478 (4)N3—H3A0.8942
C6—H60.9300N3—H3B0.9368
N1—H1A0.8900N4—O31.201 (5)
N1—H1B0.8900N4—O41.211 (5)
N2—O11.206 (4)S1—O71.449 (3)
N2—O21.218 (4)S1—O61.452 (3)
C7—C81.373 (5)S1—O5i1.471 (2)
C7—C121.386 (5)S1—O51.471 (2)
C2—C1—C6121.6 (3)C7—C8—C9119.9 (3)
C2—C1—N1120.0 (3)C7—C8—H8120.0
C6—C1—N1118.3 (3)C9—C8—H8120.0
C3—C2—C1119.2 (3)C8—C9—C10120.4 (3)
C3—C2—H2120.4C8—C9—H9119.8
C1—C2—H2120.4C10—C9—H9119.8
C2—C3—C4120.8 (3)C11—C10—C9118.2 (3)
C2—C3—H3119.6C11—C10—H10120.9
C4—C3—H3119.6C9—C10—H10120.9
C5—C4—C3118.0 (3)C12—C11—C10123.0 (3)
C5—C4—H4121.0C12—C11—N4117.8 (3)
C3—C4—H4121.0C10—C11—N4119.2 (3)
C4—C5—C6123.5 (3)C11—C12—C7117.2 (3)
C4—C5—N2119.0 (3)C11—C12—H12121.4
C6—C5—N2117.5 (3)C7—C12—H12121.4
C5—C6—C1116.9 (3)C7—N3—H3A110.2
C5—C6—H6121.5C7—N3—H3B108.1
C1—C6—H6121.5H3A—N3—H3B108.0
C1—N1—H1A109.6O3—N4—O4123.6 (4)
C1—N1—H1B109.4O3—N4—C11118.7 (4)
H1A—N1—H1B109.5O4—N4—C11117.7 (4)
O1—N2—O2124.2 (3)O7—S1—O6110.40 (17)
O1—N2—C5118.5 (3)O7—S1—O5i108.80 (12)
O2—N2—C5117.4 (3)O6—S1—O5i110.87 (11)
C8—C7—C12121.3 (3)O7—S1—O5108.80 (12)
C8—C7—N3120.0 (3)O6—S1—O5110.87 (11)
C12—C7—N3118.7 (3)O5i—S1—O5107.01 (19)
C6—C1—C2—C30.0C12—C7—C8—C90.0
N1—C1—C2—C3180.0N3—C7—C8—C9180.0
C1—C2—C3—C40.0C7—C8—C9—C100.0
C2—C3—C4—C50.0C8—C9—C10—C110.0
C3—C4—C5—C60.0C9—C10—C11—C120.0
C3—C4—C5—N2180.0C9—C10—C11—N4180.0
C4—C5—C6—C10.0C10—C11—C12—C70.0
N2—C5—C6—C1180.0N4—C11—C12—C7180.0
C2—C1—C6—C50.0C8—C7—C12—C110.0
N1—C1—C6—C5180.0N3—C7—C12—C11180.0
C4—C5—N2—O1180.0C12—C11—N4—O30.0
C6—C5—N2—O10.0C10—C11—N4—O3180.0
C4—C5—N2—O20.0C12—C11—N4—O4180.0
C6—C5—N2—O2180.0C10—C11—N4—O40.0
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6ii0.892.373.226 (4)161
N1—H1B···O50.892.302.987 (4)134
N1—H1B···O5iii0.892.392.928 (3)119
N3—H3A···O7iv0.891.862.755 (4)176
N3—H3B···O5i0.941.842.756 (3)164
C4—H4···O4v0.932.483.229 (5)138
C6—H6···O6ii0.932.293.139 (4)151
C8—H8···O3vi0.932.453.165 (5)133
C10—H10···O2vii0.932.513.184 (5)130
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x, y+1/2, z+1; (vi) x1, y, z; (vii) x1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula2C6H7N2O2+·SO42
Mr374.33
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)290
a, b, c (Å)7.9177 (16), 30.843 (6), 6.3924 (13)
V3)1561.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.959, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
12364, 1845, 1735
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.144, 1.17
No. of reflections1845
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.44

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.892.373.226 (4)161
N1—H1B···O50.892.302.987 (4)134
N1—H1B···O5ii0.892.392.928 (3)119
N3—H3A···O7iii0.891.862.755 (4)176
N3—H3B···O5iv0.941.842.756 (3)164
C4—H4···O4v0.932.483.229 (5)138
C6—H6···O6i0.932.293.139 (4)151
C8—H8···O3vi0.932.453.165 (5)133
C10—H10···O2vii0.932.513.184 (5)130
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y, z+1/2; (v) x, y+1/2, z+1; (vi) x1, y, z; (vii) x1, y+1/2, z+1.
 

Acknowledgements

The authors thank Central China Normal University and the China University of Geosciences for supporting this work. The support of the Education Bureau of Hubei Province (project No. D2006-28004) and the Technologies R&D Programme of Hubei Province (grant Nos. 2005 A A401D57 and 2006 A A101C39) is gratefully acknowledged.

References

First citationBao, F., Chen, Y. & Ng, S. W. (2006). Acta Cryst. E62, o4186–o4187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarclay, G. A. & Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979–1991.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Elerman, Y., Svoboda, I., Fuess, H., Griesar, K. & Haase, W. (1997). Z. Naturforsch. Teil B, 52, 157–161.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Atakol, O. & Akay, A. (1996). Acta Cryst. C52, 2676–2678.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1086
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds