organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o972-o973

4-(3-Methyl­anilino)-N-[N-(1-methyl­ethyl)carbamo­yl]pyridinium-3-sulfon­amidate (torasemide T–N): a low temperature redetermination

aDipartimento di Scienze Farmaceutiche, Universitá di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy, and bDipartimento di Chimica, Universitá di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
*Correspondence e-mail: massimo.divaira@unifi.it

(Received 24 March 2009; accepted 31 March 2009; online 8 April 2009)

The structure [Danilovski et al. (2001[Danilovski, A., Filić, D., Orešić, M. & Dumić, M. (2001). Croat. Chim. Acta, 74, 103-120.]). Croat. Chim. Acta 74, 103–120] of the T–N (non-solvated) polymorph of torasemide, C16H20N4O3S, a diuretic drug used in the treatment of hypertension, has been redetermined at low temperature. The zwitterionic form of the mol­ecule is confirmed, although GAUSSIAN03 calculations suggest that this form is less stable in the gas phase. The unit-cell contraction between 298 and 100 K is approximately isotropic and the largest structual change is in a C—N—C—C torsion angle, which differs by 11.4 (3)° between the room-temperature and low-temperature structures. There are two mol­ecules in the asymmetric unit, both of which contain an intra­molecular N—H⋯N hydrogen bond. In the crystal structure, both mol­ecules form inversion dimers linked by pairs of N—H⋯N hydrogen bonds. Further N—H⋯N and N—H⋯O hydrogen bonds lead to a three-dimensional network. The different hydrogen-bond arrangements and packing motifs in the polymorphs of torasemide are discussed in detail.

Related literature

For the crystal structures of polymorphs of torasemide, see: Dupont et al. (1978[Dupont, L., Campsteyn, H., Lamotte, J. & Vermeire, M. (1978). Acta Cryst. B34, 2659-2662.]); Danilovski et al. (2001[Danilovski, A., Filić, D., Orešić, M. & Dumić, M. (2001). Croat. Chim. Acta, 74, 103-120.]). For the structure of the water–methanol solvated T–II form of torasemide, see: Bartolucci et al. (2009[Bartolucci, G., Bruni, B., Coran, S. A. & Di Vaira, M. (2009). Acta Cryst. E65, o970-o971.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N4O3S

  • Mr = 348.42

  • Monoclinic, P 21 /c

  • a = 11.3378 (1) Å

  • b = 18.9055 (1) Å

  • c = 16.4958 (1) Å

  • β = 94.273 (1)°

  • V = 3525.99 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.82 mm−1

  • T = 100 K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur PX Ultra CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.541, Tmax = 1.000 (expected range = 0.412–0.761)

  • 53231 measured reflections

  • 6941 independent reflections

  • 6840 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.07

  • 6941 reflections

  • 458 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.87 (2) 2.50 (2) 3.0897 (18) 126.1 (17)
N5—H5N⋯N7 0.91 (2) 2.21 (2) 2.9399 (19) 136.4 (18)
N4—H4N⋯O1i 0.89 (2) 2.16 (2) 3.0400 (18) 175 (2)
N8—H8N⋯O5ii 0.90 (2) 2.01 (2) 2.9067 (18) 175 (2)
N1—H1N⋯N3i 0.87 (2) 2.20 (2) 2.8977 (19) 137.4 (18)
N5—H5N⋯N7ii 0.91 (2) 2.37 (2) 3.0591 (19) 132.9 (17)
N2—H2N⋯O4 0.93 (2) 2.33 (2) 2.8674 (18) 116.8 (16)
N6—H6N⋯O2iii 0.85 (2) 2.08 (2) 2.8184 (18) 145 (2)
N2—H2N⋯O6 0.93 (2) 1.77 (2) 2.6286 (17) 153.4 (19)
N6—H6N⋯O3iii 0.85 (2) 2.37 (2) 2.9660 (19) 128.2 (18)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), GAUSSIAN03 (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Pittsburgh, Pennsylvania, USA.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Three polymorphs of torasemide have been reported up to now, respectively denoted T–I, T–II (Dupont et al., 1978) and T–N (Danilovski et al., 2001). In addition, the structure of a water–methanol solvate, isomorphous with form T–II has now been determined (Bartolucci et al., 2009). Since crystals of the T–N form were repeatedly obtained in the course of an investigation on torasemide polymorphic forms, it was deemed worthwhile to collect a set of low–temperature (100 K) data on this structure (I), in order to enable comparisons with the results of the previous, accurate, room–temperature study of the same T–N form. Also, it appeared that a new, unified, approach to the description of hydrogen bonding in the T–N, T–II and T–II solvate structures would be useful. The asymmetric unit of the monoclinic unit cell of I (Fig. 1) contains two symmetry–independent molecules of torasemide (as for form T–II; however, no solvent molecules are present in the T–N structure). As already pointed out by Danilovski et al., the T–N form has the highest density among all known polymorphs. Moreover, there is a 3% decrease in the cell volume going from room temperature to 100 K, the decrease being rather isotropic, possibly due to the rather uniform, three–dimensional, distribution of hydrogen–bond linkages (hydrogen bonds and the effects on their distances due to the decrease in temperature are considered below). As far as the molecular conformation is concerned, only the most flexible parts are significantly affected by the temperature decrease, with a 11.4 (3)° change in the value of the C6–N4–C7–C8 torsion angle and a 4.1° variation for the C22–N8–C23–C24 one (labelling criteria are consistent with those of the accompanying paper on the T–II solvated form: the molecules formed by carbon atoms C1 to C16 and C17 to C32 respectively correspond to the A and B molecules in Danilovski's notation). Other conformational changes are smaller, the largest one, 3.2 (3)°, being found for the torsion angle of the S1–N3–C6–N4 chain. The values of the angles between the best planes through the aromatic rings of the two molecules, 81.60 (5)° (A) and 63.21 (6)° (B), are close to those found in the room–temperature study [80.3 (2)° and 62.8 (3)°, respectively]. The N–H amine bonds are oriented as in the structure of the T–II solvate and the large difference (ca 0.09 Å) between the lengths of the two N–C bonds formed by N1 and, separately, by N5, discussed in connection with the T–II solvate structure, is found also for the T–N polymorph.

The three–dimensional network of hydrogen bonds (the order of entries in Table 1 corresponds to that of the report of the room–temperature investigation) presents strong similarities with that of the T–II form, although these are elusive, due to differences in the reference systems. As in the T–II structure, there are centrosymmetric dimers of molecule A, internally connnected by the N1···N3 (N1···N3 = 3.090 (2) Å, N1—H1N···N3 = 126 (2)°), N1···N3i (N1···N3i = 2.898 (2) Å, N1—H1N···N3i = 137 (2)°; symmetry code (i): - x, 1 - y, - z) and N4···O1i (N4···O1i = 3.040 (2) Å, N4—H4N···O1i = 175 (2)°) hydrogen bonds and centrosymmetric dimers of molecule B, linked by the N5···N7 (N5···N7 = 2.940 (2) Å, N5—H5N···N7 = 136 (2)°), N5···N7ii (N5···N7ii = 3.059 (2) Å, N5—H5N···N7ii = 133 (2)°; symmetry code (ii): 1 - x, - y, - z) and N8···O5ii (N8···O5ii = 2.907 (2) Å, N8—H8N···O5ii = 175 (2)°) hydrogen bonds. In a similar way to the arrangement of the T–II polymorph, dimers of the above two types are connected through bifurcated hydrogen bonds, namely, N2···O4 (N2···O4 = 2.867 (2) Å, N2—H2N···O4 = 117 (2)°) and N2···O6 (N2···O6 = 2.629 (2) Å, N2—H2N···O6 = 153 (2)°), forming chains characterized by the AABBAA sequence of molecules. These chains are stacked sideways forming planes parallel to the ab cell face (Fig. 2). On adjacent planes of this set, spaced by c/2 intervals, the chains are alternatively parallel to the [1–10] and [110] directions. As in the structure of the T—II form, a three–dimensional network of hydrogen bonds is attained through connections between molecule dimers belonging to adjacent planes of the former set. The latter links involve the N6···O2iii (N6···O2iii = 2.818 (2) Å, N6—H6N···O2iii = 145 (2)°; symmetry code (iii): x, 1/2 - y, 1/2 + z) and N6···O3iii (N6···O3iii = 2.966 (2) Å, N6—H6N···O3iii = 128 (2)°) hydrogen bonds, in such a way that a distinct set of planar arrays of AABBAA chains is generated, these planes being parallel to the ac cell face (Fig. 3). At variance with the arrangement existing in the T–II structure (but consistently with the difference between the space groups of the T–II and T–N forms), the chains on all planes of the latter set have the same [10–1] orientation. With the exceptions of the intramolecular N1···N3 and N5···N7 hydrogen bonds, the lengths of all the other hydrogen bonds decrease with decreasing temperature, the largest effects (ca 0.08 Å decrease from room temperature to 100 K) occurring for the intradimer intermolecular N1···N3i and N5···N7ii linkages.

Since all recent torasemide structure determinations have unambiguously shown that the molecule adopts the zwitterionic form, it was interesting to compare the energy of this arrangement with that of the tautomer where the N3, or N7, nitrogen is protonated, instead of the pyridine nitrogen. Geometry optimizations performed with the GAUSSIAN03 programs suite at the B3LYP/6–31 G(d,p) level, followed by single–point calculations on the optimized geometries, using the 6–311++G(d,p) basis set, yielded the zwitterionic form as definitely less stable than the other one (by as much as 56.6 kJ/mol) in the gas phase. However, the energy gap reduces to 5.3 kJ/mol if the presence of a dielectric environment is simulated by the PCM model, suggesting that the zwitterionic form is actually stabilized by the hydrogen bond interactions existing in water solution as well as in the solid state. Both optimized geometries showed the appreciable difference in the lengths of the two N–C bonds formed by the amine N1, or N5, atom (this point, recalled above, is discussed in the accompanying paper).

Related literature top

For the crystal structures of polymorphs of torasemide, see: Dupont et al. (1978); Danilovski et al. (2001). For the structure of the water–methanol solvated T–II form of torasemide, see: Bartolucci et al. (2009).

Experimental top

Samples of torasemide were kindly provided by SIMS (SIMS srl, Reggello Firenze, Italy). Crystals of (I), suitable for X-ray diffraction analysis, were obtained by slow evaporation from methanol solutions.

Refinement top

H atoms bound to carbon atoms were in geometrically generated positions, riding, whereas the coordinates of those bound to the N atoms were refined freely. The constraint U(H) = 1.2Ueq(C,N) on hydrogen temperature factors was applied [U(H) = 1.5Ueq(C) for the H atoms of methyl groups]. The N—H bond distances formed by refined hydrogen atoms were in the range 0.85 – 0.93 Å.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), GAUSSIAN03 (Frisch et al.,2004) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the content of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in the structure of (I), in proximity of the ab face. Hydrogen bonds are denoted by dashed lines. Only hydrogen atoms involved in the formation of hydrogen bonds are shown. The A and B labels denote centrosymmetric molecule dimers, respectively formed by the symmetry–independent molecules of the two types, present in the structure. The dimers, joined by hydrogen bonds, form chains parallel to the [1–10] direction (or to the [110] direction, on parallel planes at c/2 distance from the one shown).
[Figure 3] Fig. 3. The arrangement of chains formed by hydrogen–bonded molecule dimers lying in proximity of the ac face. The same type of arrangement, with all chains consistently aligned in the [10–1] direction, exists on the neighbouring parallel planes, at b/2 distance from the one shown.
4-(3-Methylanilino)-N-[N-(1-methylethyl)carbamoyl]pyridinium-3- sulfonamidate top
Crystal data top
C16H20N4O3SF(000) = 1472
Mr = 348.42Dx = 1.313 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 43504 reflections
a = 11.3378 (1) Åθ = 4.6–72.2°
b = 18.9055 (1) ŵ = 1.82 mm1
c = 16.4958 (1) ÅT = 100 K
β = 94.273 (1)°Prism, colorless
V = 3525.99 (4) Å30.50 × 0.20 × 0.15 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur PX Ultra CCD
diffractometer
6941 independent reflections
Radiation source: fine-focus sealed tube6840 reflections with I > 2σ(I)
Oxford Diffraction, Enhance ULTRA assembly monochromatorRint = 0.029
Detector resolution: 8.1241 pixels mm-1θmax = 72.6°, θmin = 4.6°
ω scansh = 1313
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
k = 1923
Tmin = 0.541, Tmax = 1.000l = 2017
53231 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0678P)2 + 1.9103P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6941 reflectionsΔρmax = 0.64 e Å3
458 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (2)
Crystal data top
C16H20N4O3SV = 3525.99 (4) Å3
Mr = 348.42Z = 8
Monoclinic, P21/cCu Kα radiation
a = 11.3378 (1) ŵ = 1.82 mm1
b = 18.9055 (1) ÅT = 100 K
c = 16.4958 (1) Å0.50 × 0.20 × 0.15 mm
β = 94.273 (1)°
Data collection top
Oxford Diffraction Xcalibur PX Ultra CCD
diffractometer
6941 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
6840 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 1.000Rint = 0.029
53231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.64 e Å3
6941 reflectionsΔρmin = 0.36 e Å3
458 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06628 (14)0.35277 (8)0.09441 (9)0.0240 (3)
C20.05152 (15)0.28496 (9)0.12963 (10)0.0292 (3)
H20.01810.27490.15620.035*
C30.13599 (15)0.23451 (9)0.12564 (11)0.0308 (4)
H30.12380.18930.14870.037*
N20.23689 (12)0.24714 (7)0.08976 (9)0.0281 (3)
H2N0.2975 (19)0.2144 (11)0.0880 (13)0.034*
C40.25680 (14)0.31069 (8)0.05726 (9)0.0253 (3)
H40.32870.31860.03260.030*
C50.17588 (13)0.36451 (8)0.05876 (9)0.0232 (3)
S10.20832 (3)0.446859 (19)0.01391 (2)0.02230 (12)
O10.19638 (10)0.49999 (6)0.07600 (7)0.0259 (2)
O20.32755 (10)0.44000 (6)0.01170 (7)0.0259 (2)
N30.10577 (12)0.45781 (7)0.05325 (8)0.0242 (3)
C60.09635 (14)0.41075 (8)0.11840 (9)0.0253 (3)
O30.17766 (10)0.37454 (6)0.14317 (7)0.0285 (3)
N40.01530 (13)0.40839 (8)0.15352 (9)0.0319 (3)
H4N0.069 (2)0.4363 (12)0.1341 (14)0.038*
C70.04833 (16)0.36875 (10)0.22750 (10)0.0330 (4)
H70.00950.32920.23160.040*
C80.1707 (2)0.33682 (15)0.22238 (16)0.0605 (7)
H810.16940.30390.17640.091*
H820.19360.31130.27280.091*
H830.22790.37460.21460.091*
C90.0425 (2)0.41555 (12)0.30182 (12)0.0474 (5)
H910.03770.43450.30350.071*
H920.09870.45470.29890.071*
H930.06270.38770.35100.071*
N10.01871 (12)0.40159 (7)0.09416 (8)0.0252 (3)
H1N0.0117 (18)0.4407 (12)0.0675 (13)0.030*
C100.11809 (14)0.39528 (8)0.14235 (10)0.0247 (3)
C110.22992 (14)0.38155 (8)0.10547 (10)0.0279 (3)
H110.24020.37580.04820.033*
C120.32729 (15)0.37622 (9)0.15230 (11)0.0306 (4)
C130.30887 (15)0.38601 (9)0.23606 (11)0.0327 (4)
H130.37400.38230.26890.039*
C140.19782 (16)0.40100 (10)0.27239 (11)0.0338 (4)
H140.18760.40840.32940.041*
C150.10120 (15)0.40520 (9)0.22556 (10)0.0300 (3)
H150.02450.41480.25030.036*
C160.44868 (16)0.36000 (11)0.11375 (14)0.0426 (5)
H1610.46410.30920.11780.064*
H1620.45320.37390.05640.064*
H1630.50790.38630.14190.064*
C170.53049 (14)0.00721 (8)0.20469 (10)0.0255 (3)
C180.57906 (15)0.00421 (9)0.28673 (10)0.0287 (3)
H180.65410.01710.29900.034*
C190.51868 (16)0.03167 (9)0.34779 (10)0.0303 (3)
H190.55170.02860.40230.036*
N60.41244 (13)0.06327 (8)0.33205 (9)0.0295 (3)
H6N0.3709 (19)0.0776 (12)0.3695 (14)0.035*
C200.36491 (15)0.07020 (9)0.25530 (10)0.0267 (3)
H200.29120.09380.24550.032*
C210.42078 (14)0.04394 (8)0.19141 (10)0.0246 (3)
S20.34526 (3)0.048572 (19)0.09286 (2)0.02303 (12)
O40.24685 (10)0.09590 (6)0.10138 (7)0.0273 (2)
O50.31276 (10)0.02365 (6)0.07219 (7)0.0267 (2)
N70.43996 (12)0.07155 (7)0.03378 (8)0.0241 (3)
C220.48491 (14)0.13952 (8)0.03857 (9)0.0247 (3)
O60.44602 (10)0.18959 (6)0.07821 (7)0.0297 (3)
N80.57991 (14)0.14797 (8)0.00463 (10)0.0335 (3)
H8N0.611 (2)0.1105 (12)0.0284 (14)0.040*
C230.64106 (16)0.21554 (9)0.00994 (12)0.0337 (4)
H230.63500.24130.04250.040*
C240.5836 (2)0.26095 (11)0.07816 (14)0.0468 (5)
H2410.59350.23820.13060.070*
H2420.62110.30770.07710.070*
H2430.49910.26620.07070.070*
C250.77101 (18)0.20277 (11)0.02102 (15)0.0462 (5)
H2510.80550.17390.02410.069*
H2520.81250.24820.02180.069*
H2530.77900.17790.07250.069*
N50.58380 (12)0.02241 (8)0.14337 (8)0.0278 (3)
H5N0.5523 (18)0.0126 (11)0.0923 (13)0.033*
C260.67680 (15)0.07370 (10)0.15013 (10)0.0303 (4)
C270.77484 (16)0.06222 (12)0.10718 (11)0.0383 (4)
H270.78470.01820.08080.046*
C280.86000 (18)0.11553 (17)0.10247 (13)0.0596 (7)
C290.8433 (3)0.17915 (16)0.14258 (17)0.0703 (9)
H290.90010.21580.13980.084*
C300.7461 (3)0.18997 (14)0.18613 (17)0.0644 (7)
H300.73680.23360.21350.077*
C310.66150 (19)0.13720 (11)0.19027 (13)0.0449 (5)
H310.59410.14450.22020.054*
C320.9641 (2)0.1025 (2)0.05306 (16)0.0944 (14)
H3211.01600.14400.05600.142*
H3221.00820.06110.07460.142*
H3230.93610.09380.00370.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (7)0.0249 (8)0.0240 (7)0.0036 (6)0.0044 (6)0.0007 (6)
C20.0273 (8)0.0261 (8)0.0355 (9)0.0035 (6)0.0113 (6)0.0048 (7)
C30.0320 (9)0.0259 (8)0.0359 (9)0.0042 (6)0.0122 (7)0.0056 (7)
N20.0283 (7)0.0238 (7)0.0333 (7)0.0073 (5)0.0089 (6)0.0037 (5)
C40.0239 (7)0.0269 (8)0.0256 (7)0.0032 (6)0.0050 (6)0.0012 (6)
C50.0218 (7)0.0261 (7)0.0221 (7)0.0033 (6)0.0044 (6)0.0014 (6)
S10.0216 (2)0.0232 (2)0.0225 (2)0.00266 (13)0.00451 (14)0.00186 (13)
O10.0261 (6)0.0259 (5)0.0259 (5)0.0018 (4)0.0036 (4)0.0026 (4)
O20.0214 (5)0.0303 (6)0.0266 (6)0.0024 (4)0.0063 (4)0.0031 (4)
N30.0247 (7)0.0253 (6)0.0229 (6)0.0046 (5)0.0030 (5)0.0020 (5)
C60.0271 (8)0.0247 (7)0.0245 (7)0.0027 (6)0.0057 (6)0.0033 (6)
O30.0264 (6)0.0274 (6)0.0326 (6)0.0037 (4)0.0083 (5)0.0015 (5)
N40.0269 (7)0.0400 (8)0.0285 (7)0.0082 (6)0.0003 (6)0.0081 (6)
C70.0321 (9)0.0366 (9)0.0305 (8)0.0023 (7)0.0022 (7)0.0072 (7)
C80.0474 (13)0.0741 (17)0.0611 (14)0.0202 (12)0.0124 (11)0.0272 (13)
C90.0630 (13)0.0464 (12)0.0317 (10)0.0050 (10)0.0029 (9)0.0017 (8)
N10.0226 (6)0.0245 (7)0.0295 (7)0.0049 (5)0.0084 (5)0.0059 (5)
C100.0230 (7)0.0219 (7)0.0297 (8)0.0043 (6)0.0063 (6)0.0020 (6)
C110.0263 (8)0.0242 (8)0.0333 (8)0.0030 (6)0.0040 (6)0.0036 (6)
C120.0248 (8)0.0231 (8)0.0447 (10)0.0011 (6)0.0076 (7)0.0053 (7)
C130.0287 (8)0.0307 (8)0.0405 (9)0.0026 (7)0.0142 (7)0.0015 (7)
C140.0339 (9)0.0391 (9)0.0294 (8)0.0062 (7)0.0083 (7)0.0017 (7)
C150.0251 (8)0.0345 (9)0.0306 (8)0.0044 (6)0.0038 (6)0.0015 (7)
C160.0264 (9)0.0416 (10)0.0606 (12)0.0022 (7)0.0077 (8)0.0177 (9)
C170.0261 (8)0.0252 (8)0.0256 (8)0.0003 (6)0.0053 (6)0.0020 (6)
C180.0290 (8)0.0304 (8)0.0263 (8)0.0007 (6)0.0002 (6)0.0033 (6)
C190.0357 (9)0.0318 (8)0.0233 (8)0.0049 (7)0.0016 (6)0.0017 (6)
N60.0338 (8)0.0320 (7)0.0236 (7)0.0029 (6)0.0088 (6)0.0025 (6)
C200.0287 (8)0.0260 (8)0.0261 (8)0.0001 (6)0.0058 (6)0.0013 (6)
C210.0270 (8)0.0238 (7)0.0236 (7)0.0017 (6)0.0050 (6)0.0009 (6)
S20.0245 (2)0.0222 (2)0.0226 (2)0.00471 (13)0.00328 (14)0.00076 (13)
O40.0248 (6)0.0261 (6)0.0314 (6)0.0077 (4)0.0044 (4)0.0015 (4)
O50.0298 (6)0.0226 (5)0.0282 (6)0.0024 (4)0.0047 (4)0.0023 (4)
N70.0280 (7)0.0227 (6)0.0221 (6)0.0047 (5)0.0055 (5)0.0001 (5)
C220.0259 (7)0.0247 (7)0.0236 (7)0.0052 (6)0.0024 (6)0.0006 (6)
O60.0260 (6)0.0259 (6)0.0379 (6)0.0040 (4)0.0077 (5)0.0065 (5)
N80.0347 (8)0.0243 (7)0.0438 (8)0.0011 (6)0.0176 (6)0.0062 (6)
C230.0319 (9)0.0294 (9)0.0413 (9)0.0001 (7)0.0121 (7)0.0068 (7)
C240.0486 (12)0.0396 (11)0.0533 (12)0.0040 (9)0.0116 (9)0.0056 (9)
C250.0343 (10)0.0426 (11)0.0636 (13)0.0012 (8)0.0152 (9)0.0112 (10)
N50.0269 (7)0.0334 (7)0.0231 (7)0.0092 (6)0.0030 (5)0.0018 (5)
C260.0269 (8)0.0358 (9)0.0278 (8)0.0099 (7)0.0024 (6)0.0032 (7)
C270.0264 (9)0.0600 (12)0.0278 (9)0.0069 (8)0.0019 (7)0.0106 (8)
C280.0317 (10)0.107 (2)0.0382 (11)0.0312 (12)0.0102 (8)0.0284 (12)
C290.0653 (17)0.0767 (18)0.0643 (15)0.0491 (15)0.0254 (13)0.0237 (14)
C300.0738 (17)0.0438 (13)0.0712 (16)0.0247 (12)0.0234 (14)0.0020 (11)
C310.0448 (11)0.0383 (10)0.0502 (12)0.0078 (8)0.0062 (9)0.0068 (9)
C320.0323 (12)0.200 (4)0.0498 (14)0.0384 (18)0.0021 (10)0.037 (2)
Geometric parameters (Å, º) top
C1—N11.334 (2)C17—N51.339 (2)
C1—C21.422 (2)C17—C181.424 (2)
C1—C51.431 (2)C17—C211.427 (2)
C2—C31.357 (2)C18—C191.362 (2)
C2—H20.9500C18—H180.9500
C3—N21.348 (2)C19—N61.352 (2)
C3—H30.9500C19—H190.9500
N2—C41.342 (2)N6—C201.345 (2)
N2—H2N0.93 (2)N6—H6N0.85 (2)
C4—C51.372 (2)C20—C211.363 (2)
C4—H40.9500C20—H200.9500
C5—S11.7740 (16)C21—S21.7823 (16)
S1—O11.4481 (11)S2—O41.4452 (11)
S1—O21.4518 (11)S2—O51.4483 (12)
S1—N31.5589 (13)S2—N71.5643 (13)
N3—C61.393 (2)N7—C221.382 (2)
C6—O31.2416 (19)C22—O61.2495 (19)
C6—N41.353 (2)C22—N81.345 (2)
N4—C71.457 (2)N8—C231.459 (2)
N4—H4N0.89 (2)N8—H8N0.90 (2)
C7—C91.517 (3)C23—C251.517 (2)
C7—C81.521 (3)C23—C241.523 (3)
C7—H71.0000C23—H231.0000
C8—H810.9800C24—H2410.9800
C8—H820.9800C24—H2420.9800
C8—H830.9800C24—H2430.9800
C9—H910.9800C25—H2510.9800
C9—H920.9800C25—H2520.9800
C9—H930.9800C25—H2530.9800
N1—C101.4316 (19)N5—C261.431 (2)
N1—H1N0.87 (2)N5—H5N0.91 (2)
C10—C151.384 (2)C26—C271.379 (3)
C10—C111.389 (2)C26—C311.388 (3)
C11—C121.397 (2)C27—C281.402 (3)
C11—H110.9500C27—H270.9500
C12—C131.394 (3)C28—C291.393 (4)
C12—C161.504 (2)C28—C321.504 (4)
C13—C141.383 (3)C29—C301.375 (4)
C13—H130.9500C29—H290.9500
C14—C151.389 (2)C30—C311.389 (3)
C14—H140.9500C30—H300.9500
C15—H150.9500C31—H310.9500
C16—H1610.9800C32—H3210.9800
C16—H1620.9800C32—H3220.9800
C16—H1630.9800C32—H3230.9800
N1—C1—C2121.19 (14)N5—C17—C18122.48 (15)
N1—C1—C5122.72 (14)N5—C17—C21121.66 (14)
C2—C1—C5116.09 (14)C18—C17—C21115.86 (14)
C3—C2—C1120.58 (15)C19—C18—C17120.50 (15)
C3—C2—H2119.7C19—C18—H18119.7
C1—C2—H2119.7C17—C18—H18119.7
N2—C3—C2121.47 (15)N6—C19—C18121.06 (15)
N2—C3—H3119.3N6—C19—H19119.5
C2—C3—H3119.3C18—C19—H19119.5
C4—N2—C3120.51 (14)C20—N6—C19120.83 (15)
C4—N2—H2N116.0 (13)C20—N6—H6N116.7 (15)
C3—N2—H2N123.4 (13)C19—N6—H6N122.4 (15)
N2—C4—C5121.63 (15)N6—C20—C21121.05 (15)
N2—C4—H4119.2N6—C20—H20119.5
C5—C4—H4119.2C21—C20—H20119.5
C4—C5—C1119.66 (14)C20—C21—C17120.57 (15)
C4—C5—S1118.93 (12)C20—C21—S2117.91 (12)
C1—C5—S1121.39 (11)C17—C21—S2121.19 (12)
O1—S1—O2113.94 (7)O4—S2—O5114.95 (7)
O1—S1—N3107.85 (7)O4—S2—N7117.35 (7)
O2—S1—N3117.80 (7)O5—S2—N7106.83 (7)
O1—S1—C5106.29 (7)O4—S2—C21105.28 (7)
O2—S1—C5105.64 (7)O5—S2—C21105.36 (7)
N3—S1—C5104.25 (7)N7—S2—C21106.05 (7)
C6—N3—S1118.27 (11)C22—N7—S2119.33 (11)
O3—C6—N4122.33 (15)O6—C22—N8121.01 (15)
O3—C6—N3126.15 (15)O6—C22—N7126.24 (15)
N4—C6—N3111.52 (14)N8—C22—N7112.75 (14)
C6—N4—C7123.33 (14)C22—N8—C23122.60 (14)
C6—N4—H4N118.5 (15)C22—N8—H8N119.8 (14)
C7—N4—H4N117.8 (15)C23—N8—H8N117.4 (14)
N4—C7—C9110.66 (16)N8—C23—C25109.75 (15)
N4—C7—C8109.64 (15)N8—C23—C24111.02 (16)
C9—C7—C8111.79 (19)C25—C23—C24111.51 (17)
N4—C7—H7108.2N8—C23—H23108.1
C9—C7—H7108.2C25—C23—H23108.1
C8—C7—H7108.2C24—C23—H23108.1
C7—C8—H81109.5C23—C24—H241109.5
C7—C8—H82109.5C23—C24—H242109.5
H81—C8—H82109.5H241—C24—H242109.5
C7—C8—H83109.5C23—C24—H243109.5
H81—C8—H83109.5H241—C24—H243109.5
H82—C8—H83109.5H242—C24—H243109.5
C7—C9—H91109.5C23—C25—H251109.5
C7—C9—H92109.5C23—C25—H252109.5
H91—C9—H92109.5H251—C25—H252109.5
C7—C9—H93109.5C23—C25—H253109.5
H91—C9—H93109.5H251—C25—H253109.5
H92—C9—H93109.5H252—C25—H253109.5
C1—N1—C10122.61 (13)C17—N5—C26126.59 (14)
C1—N1—H1N119.9 (14)C17—N5—H5N116.5 (13)
C10—N1—H1N117.3 (14)C26—N5—H5N116.5 (13)
C15—C10—C11120.92 (15)C27—C26—C31121.01 (17)
C15—C10—N1118.87 (14)C27—C26—N5118.10 (16)
C11—C10—N1120.19 (14)C31—C26—N5120.38 (17)
C10—C11—C12120.28 (16)C26—C27—C28120.0 (2)
C10—C11—H11119.9C26—C27—H27120.0
C12—C11—H11119.9C28—C27—H27120.0
C13—C12—C11118.17 (16)C29—C28—C27118.4 (2)
C13—C12—C16120.72 (16)C29—C28—C32122.7 (3)
C11—C12—C16121.11 (17)C27—C28—C32118.9 (3)
C14—C13—C12121.40 (15)C30—C29—C28121.3 (2)
C14—C13—H13119.3C30—C29—H29119.3
C12—C13—H13119.3C28—C29—H29119.3
C13—C14—C15120.07 (16)C29—C30—C31120.1 (3)
C13—C14—H14120.0C29—C30—H30119.9
C15—C14—H14120.0C31—C30—H30119.9
C10—C15—C14119.15 (16)C26—C31—C30119.1 (2)
C10—C15—H15120.4C26—C31—H31120.4
C14—C15—H15120.4C30—C31—H31120.4
C12—C16—H161109.5C28—C32—H321109.5
C12—C16—H162109.5C28—C32—H322109.5
H161—C16—H162109.5H321—C32—H322109.5
C12—C16—H163109.5C28—C32—H323109.5
H161—C16—H163109.5H321—C32—H323109.5
H162—C16—H163109.5H322—C32—H323109.5
N1—C1—C2—C3176.46 (16)N5—C17—C18—C19176.36 (16)
C5—C1—C2—C32.6 (2)C21—C17—C18—C193.7 (2)
C1—C2—C3—N21.2 (3)C17—C18—C19—N61.0 (3)
C2—C3—N2—C40.4 (3)C18—C19—N6—C201.9 (3)
C3—N2—C4—C50.4 (2)C19—N6—C20—C211.8 (2)
N2—C4—C5—C11.2 (2)N6—C20—C21—C171.1 (2)
N2—C4—C5—S1179.61 (12)N6—C20—C21—S2174.53 (12)
N1—C1—C5—C4176.47 (15)N5—C17—C21—C20176.28 (16)
C2—C1—C5—C42.6 (2)C18—C17—C21—C203.7 (2)
N1—C1—C5—S11.9 (2)N5—C17—C21—S23.1 (2)
C2—C1—C5—S1178.98 (12)C18—C17—C21—S2176.91 (12)
C4—C5—S1—O1125.64 (13)C20—C21—S2—O412.97 (15)
C1—C5—S1—O155.93 (14)C17—C21—S2—O4173.67 (13)
C4—C5—S1—O24.25 (15)C20—C21—S2—O5108.94 (13)
C1—C5—S1—O2177.32 (12)C17—C21—S2—O564.42 (14)
C4—C5—S1—N3120.55 (13)C20—C21—S2—N7138.01 (13)
C1—C5—S1—N357.88 (14)C17—C21—S2—N748.63 (15)
O1—S1—N3—C6177.62 (11)O4—S2—N7—C2247.61 (14)
O2—S1—N3—C651.70 (14)O5—S2—N7—C22178.36 (11)
C5—S1—N3—C664.93 (13)C21—S2—N7—C2269.62 (13)
S1—N3—C6—O323.6 (2)S2—N7—C22—O610.9 (2)
S1—N3—C6—N4156.37 (12)S2—N7—C22—N8168.51 (12)
O3—C6—N4—C75.9 (3)O6—C22—N8—C231.7 (3)
N3—C6—N4—C7174.09 (15)N7—C22—N8—C23178.84 (15)
C6—N4—C7—C992.7 (2)C22—N8—C23—C25149.93 (18)
C6—N4—C7—C8143.5 (2)C22—N8—C23—C2486.3 (2)
C2—C1—N1—C1012.9 (2)C18—C17—N5—C2615.8 (3)
C5—C1—N1—C10168.03 (15)C21—C17—N5—C26164.23 (16)
C1—N1—C10—C1573.0 (2)C17—N5—C26—C27131.35 (18)
C1—N1—C10—C11108.95 (18)C17—N5—C26—C3156.8 (3)
C15—C10—C11—C121.2 (2)C31—C26—C27—C281.0 (3)
N1—C10—C11—C12179.23 (14)N5—C26—C27—C28170.78 (16)
C10—C11—C12—C130.9 (2)C26—C27—C28—C290.6 (3)
C10—C11—C12—C16178.81 (16)C26—C27—C28—C32178.09 (19)
C11—C12—C13—C140.4 (3)C27—C28—C29—C300.2 (3)
C16—C12—C13—C14179.96 (17)C32—C28—C29—C30178.8 (2)
C12—C13—C14—C151.3 (3)C28—C29—C30—C310.6 (4)
C11—C10—C15—C140.2 (2)C27—C26—C31—C300.6 (3)
N1—C10—C15—C14178.32 (15)N5—C26—C31—C30171.00 (19)
C13—C14—C15—C101.0 (3)C29—C30—C31—C260.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.87 (2)2.50 (2)3.0897 (18)126.1 (17)
N5—H5N···N70.91 (2)2.21 (2)2.9399 (19)136.4 (18)
N4—H4N···O1i0.89 (2)2.16 (2)3.0400 (18)175 (2)
N8—H8N···O5ii0.90 (2)2.01 (2)2.9067 (18)175 (2)
N1—H1N···N3i0.87 (2)2.20 (2)2.8977 (19)137.4 (18)
N5—H5N···N7ii0.91 (2)2.37 (2)3.0591 (19)132.9 (17)
N2—H2N···O40.93 (2)2.33 (2)2.8674 (18)116.8 (16)
N6—H6N···O2iii0.85 (2)2.08 (2)2.8184 (18)145 (2)
N2—H2N···O60.93 (2)1.77 (2)2.6286 (17)153.4 (19)
N6—H6N···O3iii0.85 (2)2.37 (2)2.9660 (19)128.2 (18)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H20N4O3S
Mr348.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.3378 (1), 18.9055 (1), 16.4958 (1)
β (°) 94.273 (1)
V3)3525.99 (4)
Z8
Radiation typeCu Kα
µ (mm1)1.82
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur PX Ultra CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2006)
Tmin, Tmax0.541, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
53231, 6941, 6840
Rint0.029
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.07
No. of reflections6941
No. of parameters458
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.36

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), GAUSSIAN03 (Frisch et al.,2004) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.87 (2)2.50 (2)3.0897 (18)126.1 (17)
N5—H5N···N70.91 (2)2.21 (2)2.9399 (19)136.4 (18)
N4—H4N···O1i0.89 (2)2.16 (2)3.0400 (18)175 (2)
N8—H8N···O5ii0.90 (2)2.01 (2)2.9067 (18)175 (2)
N1—H1N···N3i0.87 (2)2.20 (2)2.8977 (19)137.4 (18)
N5—H5N···N7ii0.91 (2)2.37 (2)3.0591 (19)132.9 (17)
N2—H2N···O40.93 (2)2.33 (2)2.8674 (18)116.8 (16)
N6—H6N···O2iii0.85 (2)2.08 (2)2.8184 (18)145 (2)
N2—H2N···O60.93 (2)1.77 (2)2.6286 (17)153.4 (19)
N6—H6N···O3iii0.85 (2)2.37 (2)2.9660 (19)128.2 (18)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Italian Ministero dell'Istruzione, dell'Universitá e della Ricerca.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBartolucci, G., Bruni, B., Coran, S. A. & Di Vaira, M. (2009). Acta Cryst. E65, o970–o971.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanilovski, A., Filić, D., Orešić, M. & Dumić, M. (2001). Croat. Chim. Acta, 74, 103–120.  CAS Google Scholar
First citationDupont, L., Campsteyn, H., Lamotte, J. & Vermeire, M. (1978). Acta Cryst. B34, 2659–2662.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Pittsburgh, Pennsylvania, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o972-o973
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds