organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1169

Ethyl (Z)-2-cyano-3-(9-ethyl-9H-carbazol-3-yl)prop-2-enoate

aChemistry Department, Faculty of Science, King Abdul-Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 22 April 2009; accepted 25 April 2009; online 30 April 2009)

In the title compound, C20H18N2O2, weak inter­molecular C—H⋯O and C—H⋯N inter­actions generate a chain that runs parallel to the b axis and incorporates C(7) and R22(15) graph-set motifs. The supra­molecular aggregation is completed by the presence of weak C—H⋯π inter­actions.

Related literature

For background to the applications of carbazole derivatives, see: Park et al. (1998[Park, K. H., Yeon, K. M., Lee, M. Y., Lee, S. D., Shin, D. H., Lee, C. J. & Kim, N. (1998). Polymer, 39, 7061-7066.]); Kimoto et al. (2004[Kimoto, A., Cho, J. S., Higuchi, M. & Yamamoto, K. (2004). Macromolecules, 37, 5531-5537.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O2

  • Mr = 318.36

  • Monoclinic, P 21 /n

  • a = 10.8030 (7) Å

  • b = 13.4443 (10) Å

  • c = 11.6160 (7) Å

  • β = 93.387 (5)°

  • V = 1684.15 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 19261 measured reflections

  • 4195 independent reflections

  • 1121 reflections with I > 2σ(I)

  • Rint = 0.146

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.228

  • S = 0.91

  • 4195 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.58 3.255 (5) 130
C12—H12⋯N2ii 0.93 2.58 3.491 (6) 165
C17—H17BCg2iii 0.97 2.82 3.692 (5) 150
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]. Cg2 is the centroid of the C7–C12 ring.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nonlinear optical (NLO) andelectro-optic (EO) properties of organic dyes have been the hot subject nowadays because of the potential applications in optical switching, optical telecommunication devices, optical disks, new type of dye lasers (Kimoto et al., 2004). Carbazole derivatives have important roles of optical material due to their special photorefractive, electrical, and chemical properties. Carbazoles are well known as a conjugated, good hole transporting, electron-donor, planar compound and easy to introduce solubilizing groups to rigid ring structure (Park et al., 1998).

The molecular structure of title compound (I) is shown in Fig. 1. The bond lengths and angles in (I) display normal values (Allen et al., 1987). The nine-membered ring N1/C1—C8 is essentially planar, with maximum deviations of 0.014 (5)Åfor C5 and -0.025 (4) Å for C7 from its mean plane, respectively. In the molecule of (I), the rest atoms of the molecule lie close to the nine-membered ring plane, with the maximum deviations of 1.110 (7), -0.467 (3) and -0.341 (5) Å, for C20, O1 and C18, respectively.

The crystal structure of (I) is stabilized by weak C—H···O and C—H···N interactions (Table 1, Fig. 2), that generates a chain which runs parallel to the baxis and has the graph-set motifs of C(7) and R22(15). The supramolecular aggregation is completed by the presence of C—H···π interactions (Table 1).

Related literature top

For background to the applications of carbazole derivatives, see: Park et al. (1998); Kimoto et al. (2004). For reference structural data, see: Allen et al. (1987). Cg2 is the centroid of the C7–C12 ring.

Experimental top

Equivalent molar quantities of N-ethyl carbazol-9-carboxaldehyde (1.0 g, 4.48 mmol) and ethylcyanoacetate (0.51 g, 4.48 mmol) were dissolved in 25 ml e thanol then heated at reflux. Pipyridine (one drop) was added to the solution and reflux was continued for 6 h. The solution was cooled to room temperature and the solid products were filtered and washed with ethanol (25 ml). Recrystalization from ethanol gave yellow prisms of (I). Yield: (0.4 g, 29%); m.p. 385 K; IR (KBr) νmax cm-1. 3028 (C—H aromatic), 2978 (–C—H aliphatic), 2216 (CN), 1721(C=O), 1573 (C=C), 1225 (C—O), 1127 (C—N).). 1H NMR(CDCl3): δ 8.15 (H-1), 8.19 (H-2), 8.41(H-3), 7.45 (H-4), 7.33 (H-5), 7.54 (H-6), 7.45 (H-7), 8.74 (H-8), 4.39 (CH3—CH2—N), 1.41 (CH3—CH2—N), 4.39 (CH3—CH2—O), 1.41 (CH3—CH2—O).

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I), showing 30% displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. View of the unit cell of (I), viewed along the c axis, showing the network of hydrogen bonds.
Ethyl (Z)-2-cyano-3-(9-ethyl-9H-carbazol-3-yl)prop-2-enoate top
Crystal data top
C20H18N2O2F(000) = 672
Mr = 318.36Dx = 1.256 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1000 reflections
a = 10.8030 (7) Åθ = 2.3–18.8°
b = 13.4443 (10) ŵ = 0.08 mm1
c = 11.6160 (7) ÅT = 296 K
β = 93.387 (5)°Prism, yellow
V = 1684.15 (19) Å30.35 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1121 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.146
Graphite monochromatorθmax = 28.4°, θmin = 2.3°
ω scansh = 1414
19261 measured reflectionsk = 1717
4195 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0844P)2]
where P = (Fo2 + 2Fc2)/3
4195 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H18N2O2V = 1684.15 (19) Å3
Mr = 318.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8030 (7) ŵ = 0.08 mm1
b = 13.4443 (10) ÅT = 296 K
c = 11.6160 (7) Å0.35 × 0.10 × 0.05 mm
β = 93.387 (5)°
Data collection top
Bruker SMART CCD
diffractometer
1121 reflections with I > 2σ(I)
19261 measured reflectionsRint = 0.146
4195 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 0.91Δρmax = 0.32 e Å3
4195 reflectionsΔρmin = 0.23 e Å3
221 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4145 (3)0.8481 (2)0.1597 (3)0.0835 (14)
O21.5181 (3)0.70597 (19)0.1392 (2)0.0621 (12)
N10.7557 (3)0.6264 (3)0.3838 (4)0.0812 (19)
N21.3601 (4)0.5077 (3)0.2087 (4)0.102 (2)
C10.7049 (4)0.7186 (3)0.4082 (4)0.0608 (19)
C20.5892 (4)0.7421 (4)0.4444 (4)0.085 (2)
C30.5636 (4)0.8400 (4)0.4611 (4)0.087 (3)
C40.6497 (5)0.9127 (4)0.4426 (4)0.079 (2)
C50.7649 (4)0.8899 (3)0.4064 (4)0.0641 (19)
C60.7937 (4)0.7906 (3)0.3871 (3)0.0502 (17)
C70.9004 (4)0.7407 (3)0.3476 (3)0.0483 (17)
C80.8738 (4)0.6380 (3)0.3497 (4)0.0571 (17)
C90.9580 (4)0.5671 (3)0.3175 (4)0.0713 (19)
C101.0695 (4)0.5990 (3)0.2815 (3)0.0613 (19)
C111.0991 (4)0.7019 (3)0.2751 (3)0.0520 (17)
C121.0125 (4)0.7700 (3)0.3092 (3)0.0520 (16)
C131.2138 (4)0.7387 (3)0.2355 (3)0.0544 (16)
C141.3189 (4)0.6959 (3)0.2050 (3)0.0526 (17)
C151.3401 (4)0.5905 (4)0.2063 (4)0.0690 (19)
C161.4198 (4)0.7584 (3)0.1657 (4)0.0579 (17)
C171.6223 (4)0.7618 (3)0.1012 (4)0.0669 (17)
C181.7166 (4)0.6885 (4)0.0645 (4)0.088 (2)
C190.6800 (6)0.5253 (5)0.3793 (6)0.131 (3)
C200.6995 (6)0.4966 (5)0.4914 (6)0.148 (4)
H20.530900.692900.456800.1020*
H30.486300.858000.485600.1040*
H40.629300.978900.454900.0950*
H50.822600.939800.395100.0770*
H90.939200.499700.320200.0860*
H101.127600.552200.260700.0740*
H121.030800.837500.306000.0620*
H131.215500.807700.229800.0650*
H17A1.657300.803000.163500.0800*
H17B1.596000.804700.037200.0800*
H18A1.743300.647500.129000.1320*
H18B1.786500.723500.037200.1320*
H18C1.680400.647400.003900.1320*
H19A0.592700.535900.358500.1570*
H19B0.713700.477700.326700.1570*
H20A0.786600.487000.508800.2220*
H20B0.656200.435500.503500.2220*
H20C0.669300.547200.540900.2220*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.078 (2)0.046 (2)0.130 (3)0.0031 (17)0.0351 (19)0.0023 (19)
O20.051 (2)0.056 (2)0.081 (2)0.0006 (16)0.0186 (16)0.0005 (15)
N10.066 (3)0.039 (3)0.142 (4)0.016 (2)0.036 (2)0.001 (2)
N20.092 (3)0.052 (3)0.165 (5)0.015 (2)0.042 (3)0.006 (3)
C10.057 (3)0.043 (3)0.084 (4)0.004 (2)0.017 (3)0.003 (2)
C20.058 (3)0.071 (4)0.128 (5)0.001 (3)0.029 (3)0.000 (3)
C30.062 (4)0.077 (4)0.124 (5)0.016 (3)0.027 (3)0.005 (3)
C40.074 (4)0.059 (3)0.107 (4)0.014 (3)0.021 (3)0.002 (3)
C50.060 (3)0.054 (3)0.080 (4)0.010 (2)0.019 (3)0.002 (2)
C60.050 (3)0.045 (3)0.057 (3)0.005 (2)0.015 (2)0.000 (2)
C70.052 (3)0.043 (3)0.051 (3)0.003 (2)0.012 (2)0.000 (2)
C80.049 (3)0.046 (3)0.078 (3)0.015 (2)0.019 (2)0.001 (2)
C90.065 (3)0.036 (3)0.116 (4)0.001 (3)0.032 (3)0.004 (2)
C100.060 (3)0.039 (3)0.087 (4)0.002 (2)0.022 (3)0.006 (2)
C110.051 (3)0.041 (3)0.065 (3)0.004 (2)0.012 (2)0.000 (2)
C120.059 (3)0.034 (2)0.064 (3)0.003 (2)0.013 (2)0.001 (2)
C130.059 (3)0.038 (2)0.067 (3)0.003 (2)0.010 (2)0.002 (2)
C140.050 (3)0.039 (3)0.070 (3)0.001 (2)0.014 (2)0.001 (2)
C150.059 (3)0.056 (3)0.095 (4)0.004 (3)0.031 (3)0.001 (3)
C160.052 (3)0.050 (3)0.073 (3)0.000 (3)0.016 (2)0.000 (2)
C170.050 (3)0.074 (3)0.078 (3)0.009 (3)0.014 (3)0.003 (3)
C180.068 (3)0.094 (4)0.103 (4)0.012 (3)0.020 (3)0.009 (3)
C190.123 (5)0.164 (7)0.110 (6)0.062 (5)0.041 (5)0.026 (5)
C200.156 (7)0.134 (6)0.156 (8)0.028 (5)0.023 (6)0.008 (5)
Geometric parameters (Å, º) top
O1—C161.209 (5)C14—C151.435 (7)
O2—C161.326 (5)C14—C161.470 (6)
O2—C171.444 (5)C17—C181.497 (6)
N1—C11.392 (6)C19—C201.363 (10)
N1—C81.367 (6)C2—H20.9300
N1—C191.586 (8)C3—H30.9300
N2—C151.134 (7)C4—H40.9300
C1—C21.379 (6)C5—H50.9300
C1—C61.395 (6)C9—H90.9300
C2—C31.361 (8)C10—H100.9300
C3—C41.375 (7)C12—H120.9300
C4—C51.372 (7)C13—H130.9300
C5—C61.392 (6)C17—H17A0.9700
C6—C71.432 (6)C17—H17B0.9700
C7—C81.411 (6)C18—H18A0.9600
C7—C121.373 (6)C18—H18B0.9600
C8—C91.384 (6)C18—H18C0.9600
C9—C101.367 (6)C19—H19A0.9700
C10—C111.423 (6)C19—H19B0.9700
C11—C121.384 (6)C20—H20A0.9600
C11—C131.435 (6)C20—H20B0.9600
C13—C141.339 (6)C20—H20C0.9600
C16—O2—C17116.4 (3)C3—C2—H2121.00
C1—N1—C8110.1 (4)C2—C3—H3119.00
C1—N1—C19124.2 (4)C4—C3—H3119.00
C8—N1—C19125.2 (4)C3—C4—H4119.00
N1—C1—C2129.9 (4)C5—C4—H4119.00
N1—C1—C6107.4 (4)C4—C5—H5121.00
C2—C1—C6122.7 (4)C6—C5—H5121.00
C1—C2—C3117.4 (4)C8—C9—H9121.00
C2—C3—C4121.3 (4)C10—C9—H9121.00
C3—C4—C5121.6 (5)C9—C10—H10119.00
C4—C5—C6118.6 (4)C11—C10—H10119.00
C1—C6—C5118.3 (4)C7—C12—H12119.00
C1—C6—C7107.8 (4)C11—C12—H12119.00
C5—C6—C7133.8 (4)C11—C13—H13113.00
C6—C7—C8106.5 (4)C14—C13—H13113.00
C6—C7—C12135.4 (4)O2—C17—H17A110.00
C8—C7—C12118.1 (4)O2—C17—H17B110.00
N1—C8—C7108.1 (4)C18—C17—H17A110.00
N1—C8—C9129.7 (4)C18—C17—H17B110.00
C7—C8—C9122.1 (4)H17A—C17—H17B108.00
C8—C9—C10118.1 (4)C17—C18—H18A109.00
C9—C10—C11121.7 (4)C17—C18—H18B109.00
C10—C11—C12118.1 (4)C17—C18—H18C109.00
C10—C11—C13123.6 (4)H18A—C18—H18B109.00
C12—C11—C13118.4 (4)H18A—C18—H18C109.00
C7—C12—C11121.8 (4)H18B—C18—H18C110.00
C11—C13—C14134.3 (4)N1—C19—H19A112.00
C13—C14—C15124.0 (4)N1—C19—H19B112.00
C13—C14—C16119.5 (4)C20—C19—H19A112.00
C15—C14—C16116.5 (4)C20—C19—H19B112.00
N2—C15—C14178.1 (5)H19A—C19—H19B110.00
O1—C16—O2123.6 (4)C19—C20—H20A109.00
O1—C16—C14123.7 (4)C19—C20—H20B109.00
O2—C16—C14112.8 (3)C19—C20—H20C109.00
O2—C17—C18107.5 (3)H20A—C20—H20B110.00
N1—C19—C2099.3 (5)H20A—C20—H20C109.00
C1—C2—H2121.00H20B—C20—H20C109.00
C17—O2—C16—O10.2 (6)C1—C6—C7—C12176.6 (4)
C17—O2—C16—C14179.2 (3)C5—C6—C7—C8178.3 (4)
C16—O2—C17—C18174.2 (4)C5—C6—C7—C123.3 (8)
C8—N1—C1—C2179.6 (5)C6—C7—C8—N12.4 (5)
C8—N1—C1—C60.8 (5)C6—C7—C8—C9179.4 (4)
C19—N1—C1—C27.6 (8)C12—C7—C8—N1176.4 (4)
C19—N1—C1—C6171.1 (5)C12—C7—C8—C91.8 (6)
C1—N1—C8—C72.1 (5)C6—C7—C12—C11179.5 (4)
C1—N1—C8—C9180.0 (5)C8—C7—C12—C111.1 (6)
C19—N1—C8—C7169.8 (5)N1—C8—C9—C10177.0 (5)
C19—N1—C8—C98.2 (8)C7—C8—C9—C100.8 (7)
C1—N1—C19—C2090.6 (6)C8—C9—C10—C110.9 (6)
C8—N1—C19—C2098.7 (6)C9—C10—C11—C121.5 (6)
N1—C1—C2—C3179.5 (5)C9—C10—C11—C13178.6 (4)
C6—C1—C2—C30.9 (7)C10—C11—C12—C70.4 (5)
N1—C1—C6—C5179.4 (4)C13—C11—C12—C7179.7 (3)
N1—C1—C6—C70.7 (5)C10—C11—C13—C145.7 (7)
C2—C1—C6—C51.7 (6)C12—C11—C13—C14174.2 (4)
C2—C1—C6—C7178.2 (4)C11—C13—C14—C150.1 (7)
C1—C2—C3—C40.0 (7)C11—C13—C14—C16179.0 (4)
C2—C3—C4—C50.1 (7)C13—C14—C16—O10.6 (7)
C3—C4—C5—C60.7 (7)C13—C14—C16—O2179.6 (3)
C4—C5—C6—C11.5 (6)C15—C14—C16—O1179.7 (4)
C4—C5—C6—C7178.3 (4)C15—C14—C16—O21.3 (5)
C1—C6—C7—C81.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.583.255 (5)130
C12—H12···N2ii0.932.583.491 (6)165
C17—H17B···Cg2iii0.972.823.692 (5)150
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H18N2O2
Mr318.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.8030 (7), 13.4443 (10), 11.6160 (7)
β (°) 93.387 (5)
V3)1684.15 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19261, 4195, 1121
Rint0.146
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.228, 0.91
No. of reflections4195
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.583.255 (5)130
C12—H12···N2ii0.932.583.491 (6)165
C17—H17B···Cg2iii0.972.823.692 (5)150
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+5/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

AMA acknowledges the Deanship of Scientific Research at KAU for grant No. 3–50/429.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKimoto, A., Cho, J. S., Higuchi, M. & Yamamoto, K. (2004). Macromolecules, 37, 5531–5537.  Web of Science CrossRef CAS Google Scholar
First citationPark, K. H., Yeon, K. M., Lee, M. Y., Lee, S. D., Shin, D. H., Lee, C. J. & Kim, N. (1998). Polymer, 39, 7061–7066.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1169
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds