metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m479-m480

2,9-Di­methyl-4,7-di­phenyl-1,10-phenanthrolin-1-ium tetra­chloridoaurate(III)

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Shahid Beheshti University, GC, Evin, Tehran 1983963113, Iran, cDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, and dChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 30 March 2009; accepted 31 March 2009; online 2 April 2009)

Both the cation and anion of the title compound, (C26H21N2)[AuCl4], are disposed about a plane of mirror symmetry. The 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinium ring is oriented at a dihedral angle of 44.2 (1)° with respect to the planar phenyl ring systems. The AuIII atom has a square-planar environment defined by four Cl atoms. The crystal structure is stabilized by C—H⋯π and Au⋯π ring–metal (3.551 Å) inter­actions. In the crystal structure, the mol­ecules stack along the c axis via N—H⋯N hydrogen-bond inter­actions.

Related literature

For general background to proton-transfer systems and their structures, see: Abedi et al. (2008[Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.]); Amani et al. (2008[Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143-m1144.]); Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Karaca et al. (2009[Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m235.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C26H21N2)[AuCl4]

  • Mr = 700.22

  • Orthorhombic, P n m a

  • a = 13.5195 (10) Å

  • b = 22.9565 (17) Å

  • c = 7.5556 (6) Å

  • V = 2345.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.75 mm−1

  • T = 150 K

  • 0.20 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.345, Tmax = 0.774

  • 24337 measured reflections

  • 3265 independent reflections

  • 2835 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.03

  • 3265 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯N1i 0.76 (5) 2.28 (5) 2.646 (3) 111 (4)
C1—H1BCg3ii 0.96 2.76 3.574 (3) 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]. Cg3 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, there has been considerable interest in proton transfer systems and their structures (Amani et al., 2008; Abedi et al., 2008; Karaca et al., 2009). Several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4] and [BMI]2[AuCl4].2H2O (Hasan et al., 1999), [H2bipy][AuCl4][Cl] (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4] and [H5O2][benzo-15-crown-5]2[AuCl4] (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, [H3O][18-crown-6][AuCl4] and [H3O][4-nitrobenzo-18-crown-6][AuCl4] (Calleja et al., 2001), [DPpy.H][AuCl4] (Yap et al., 1995) and [H2DA18C6][AuCl4].2H2O (Hojjat Kashani et al., 2008) [where EMI is 1-ethyl-3-methylimidazolium,BMI is 1-butyl-3-methylimidazolium, H2bipy is 2, 2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium and H2DA18C6 is 1,10-diazonia-18-crown-6] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

Both the cation and anion of the title compound (Fig. 1) are disposed about a plane of mirror symmetry. The 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ring is oriented at a dihedral angle of 44.2 (1)° with respect to the planar phenyl ring systems. The Au ion has a square-planar environment defined by four Cl atoms. In AuCl4 anion, the Au—Cl bond lengths and Cl—Au—Cl bond angles are normal ranges. In the crystal structure, there exist ring-metal interactions [Cg2···Au1(x, y, z) = 3.551 Å and Cg2···Au1(x, 1/2 - y, z) = 3.551 Å, where Cg2 is a centroid of the central benzene ring (C5–C7/C5b–C7b) of the cation molecule]. For C1—H1B···Cg3 interaction, C1···Cg3 = 3.574Å, where Cg3 is a centroid of the phenyl ring (C8 –C13) (Table 2). View of the packing of (I) down the c-axis is given in Fig. 2.

Related literature top

For general background to proton-transfer systems and their structures, see: Abedi et al. (2008); Amani et al. (2008); Calleja et al. (2001); Hasan et al. (1999); Hojjat Kashani, Yousefi, Amani & Khavasi (2008); Johnson & Steed (1998); Karaca et al. (2009); Yap et al. (1995); Zhang et al. (2006). Cg3 is the centroid of the C8–C13 ring.

Experimental top

For the preparation of the title compound, a solution of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (0.15 g, 0.44 mmol) in HCCl3 (10 ml) was added to a solution of HAuCl4.3H2O, (0.17 g, 0.44 mmol) in ethanol (5 ml) and the resulting yellow solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of the title compound were isolated [yield; 0.23 g; 72.1%; m. p. 495 K].

Refinement top

All H atoms were seen in the difference electron density map. The H atom HN1 bound to atom N1 were refined isotropically. Since the anion group of the title molecule has symmetrically two parts, the site occupation factor of the HN1 atom were fixed at the value of 0.5. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.96 Å and with Uiso(H) = 1.2 or 1.5Ueq(C). The highest residual peak is located 0.87 Å from atom Au1 and the deepest hole is located 0.57 Å from atom Au1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [Symmetry codes: (a and b) x, 1/2 - y, z].
[Figure 2] Fig. 2. The packing of the title compound viewed down c axis.
2,9-Dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium tetrachloridoaurate(III) top
Crystal data top
(C26H21N2)[AuCl4]F(000) = 1352
Mr = 700.22Dx = 1.983 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 5918 reflections
a = 13.5195 (10) Åθ = 2.8–27.6°
b = 22.9565 (17) ŵ = 6.75 mm1
c = 7.5556 (6) ÅT = 150 K
V = 2345.0 (3) Å3Prism, yellow
Z = 40.20 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
3265 independent reflections
Radiation source: sealed tube2835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1818
Tmin = 0.345, Tmax = 0.774k = 3131
24337 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.026P)2 + 1.1102P]
where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
(C26H21N2)[AuCl4]V = 2345.0 (3) Å3
Mr = 700.22Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.5195 (10) ŵ = 6.75 mm1
b = 22.9565 (17) ÅT = 150 K
c = 7.5556 (6) Å0.20 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
3265 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2835 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.774Rint = 0.046
24337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.85 e Å3
3265 reflectionsΔρmin = 0.60 e Å3
159 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.51546 (16)0.19238 (10)0.0058 (3)0.0203 (7)
C10.61127 (19)0.10789 (13)0.0819 (4)0.0271 (8)
C20.52022 (19)0.13465 (11)0.0049 (3)0.0202 (8)
C30.4389 (2)0.10119 (12)0.0488 (4)0.0219 (8)
C40.3533 (2)0.12606 (12)0.1132 (3)0.0200 (7)
C50.35028 (19)0.18757 (11)0.1303 (3)0.0181 (7)
C60.43300 (19)0.21879 (11)0.0701 (3)0.0190 (7)
C70.27048 (18)0.22031 (10)0.2068 (3)0.0182 (7)
C80.26628 (19)0.08820 (11)0.1485 (3)0.0199 (7)
C90.2791 (2)0.03400 (11)0.2301 (4)0.0237 (8)
C100.2004 (2)0.00427 (12)0.2445 (4)0.0272 (8)
C110.1082 (2)0.01067 (13)0.1803 (4)0.0279 (8)
C120.0937 (2)0.06484 (13)0.1013 (4)0.0263 (8)
C130.1724 (2)0.10337 (12)0.0840 (3)0.0230 (8)
Au10.38322 (1)0.250000.60223 (2)0.0219 (1)
Cl10.53754 (7)0.250000.48086 (15)0.0343 (3)
Cl20.38270 (5)0.15042 (4)0.60263 (10)0.0336 (2)
Cl30.22961 (7)0.250000.72842 (14)0.0298 (3)
HN10.556 (4)0.212 (2)0.029 (7)0.009 (14)*0.500
H1A0.596800.093100.197900.0410*
H1B0.633100.076600.007400.0410*
H1C0.662400.136800.089900.0410*
H30.442800.060800.040600.0260*
H70.217600.200500.257600.0220*
H90.340700.023700.274900.0280*
H100.209800.040400.297900.0330*
H110.055900.015400.189800.0340*
H120.031300.075200.060100.0310*
H130.162800.139300.029600.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0164 (11)0.0215 (11)0.0230 (12)0.0001 (9)0.0006 (9)0.0006 (9)
C10.0232 (14)0.0249 (14)0.0333 (16)0.0047 (11)0.0024 (12)0.0025 (12)
C20.0215 (13)0.0200 (13)0.0191 (13)0.0039 (10)0.0020 (10)0.0022 (10)
C30.0242 (14)0.0194 (13)0.0220 (13)0.0028 (10)0.0005 (10)0.0008 (10)
C40.0204 (12)0.0205 (12)0.0192 (12)0.0002 (10)0.0012 (10)0.0019 (10)
C50.0176 (11)0.0199 (12)0.0167 (12)0.0000 (10)0.0030 (9)0.0014 (9)
C60.0186 (12)0.0205 (13)0.0180 (12)0.0000 (10)0.0032 (9)0.0014 (10)
C70.0174 (11)0.0204 (12)0.0168 (12)0.0035 (9)0.0008 (9)0.0002 (10)
C80.0207 (12)0.0198 (12)0.0193 (12)0.0009 (10)0.0004 (10)0.0022 (10)
C90.0226 (12)0.0229 (13)0.0256 (14)0.0033 (10)0.0005 (11)0.0017 (11)
C100.0325 (15)0.0208 (13)0.0284 (15)0.0018 (11)0.0057 (12)0.0040 (11)
C110.0292 (14)0.0266 (14)0.0280 (15)0.0071 (12)0.0058 (12)0.0028 (12)
C120.0218 (13)0.0292 (15)0.0278 (14)0.0010 (11)0.0015 (11)0.0031 (12)
C130.0246 (14)0.0210 (13)0.0233 (13)0.0025 (10)0.0018 (11)0.0004 (10)
Au10.0177 (1)0.0292 (1)0.0187 (1)0.00000.0022 (1)0.0000
Cl10.0186 (4)0.0474 (6)0.0370 (6)0.00000.0020 (4)0.0000
Cl20.0326 (4)0.0297 (4)0.0386 (4)0.0049 (3)0.0006 (3)0.0074 (3)
Cl30.0212 (4)0.0383 (6)0.0298 (5)0.00000.0043 (4)0.0000
Geometric parameters (Å, º) top
Au1—Cl2i2.2860 (9)C8—C131.404 (4)
Au1—Cl32.2852 (10)C8—C91.399 (4)
Au1—Cl12.2790 (10)C9—C101.384 (4)
Au1—Cl22.2860 (9)C10—C111.381 (4)
N1—C21.329 (3)C11—C121.393 (4)
N1—C61.359 (3)C12—C131.390 (4)
N1—HN10.76 (5)C1—H1B0.9600
C1—C21.494 (4)C1—H1C0.9600
C2—C31.401 (4)C1—H1A0.9600
C3—C41.379 (4)C3—H30.9300
C4—C51.419 (4)C7—H70.9300
C4—C81.487 (4)C9—H90.9300
C5—C61.404 (4)C10—H100.9300
C5—C71.436 (3)C11—H110.9300
C6—C6i1.433 (4)C12—H120.9300
C7—C7i1.363 (3)C13—H130.9300
Au1···C7i3.423 (2)C13···C73.135 (4)
Au1···C73.423 (2)C3···H10xii3.1000
Cl1···Cl3ii3.4011 (15)C3···H92.8000
Cl1···C7iii3.520 (3)C5···H132.8700
Cl1···Cl23.2333 (11)C7···H132.7100
Cl1···C63.485 (3)C8···H10xii2.8900
Cl1···Cl3iv3.4011 (15)C8···H72.7900
Cl1···C7v3.520 (3)C9···H32.7100
Cl1···Cl2i3.2333 (11)C9···H1Bix3.0400
Cl1···C6i3.485 (3)C10···H1Bix2.8700
Cl2···Cl13.2333 (11)C11···H1Bix2.9200
Cl2···C3vi3.636 (3)C13···H10xii3.0500
Cl2···Cl33.2269 (11)C13···H72.6600
Cl2···C2vi3.519 (2)HN1···Cl3iii2.92 (5)
Cl3···Cl1vii3.4011 (15)HN1···H1C2.2900
Cl3···Cl23.2269 (11)HN1···Cl3v2.92 (5)
Cl3···Cl1viii3.4011 (15)HN1···N1i2.28 (5)
Cl3···Cl2i3.2269 (11)H1B···C11iii2.9200
Cl1···H13v3.0500H1B···C10iii2.8700
Cl1···H13iii3.0500H1B···C9iii3.0400
Cl2···H12iii2.9200H1C···HN12.2900
Cl2···H1Cix3.0000H1C···Cl3v2.9500
Cl3···HN1x2.92 (5)H1C···Cl2iii3.0000
Cl3···HN1ix2.92 (5)H1C···Cl3iii2.9500
Cl3···H1Cx2.9500H3···H92.4000
Cl3···H1Cix2.9500H3···C92.7100
N1···N1i2.646 (3)H7···C132.6600
N1···HN1i2.28 (5)H7···C82.7900
C2···C12iii3.585 (4)H7···H132.3400
C2···Cl2xi3.519 (2)H9···H32.4000
C3···C12iii3.474 (4)H9···C32.8000
C3···Cl2xi3.636 (3)H10···C13xiii3.0500
C6···Cl13.485 (3)H10···C3xiii3.1000
C6···Cl13.485 (3)H10···C8xiii2.8900
C7···C133.135 (4)H12···Cl2ix2.9200
C7···Au13.423 (2)H13···C72.7100
C7···Au13.423 (2)H13···H72.3400
C7···Cl1ix3.520 (3)H13···Cl1x3.0500
C7···Cl1x3.520 (3)H13···Cl1ix3.0500
C12···C3ix3.474 (4)H13···C52.8700
C12···C2ix3.585 (4)
Cl1—Au1—Cl3179.07 (4)C8—C9—C10120.3 (3)
Cl1—Au1—Cl2i90.19 (2)C9—C10—C11120.6 (3)
Cl2—Au1—Cl389.81 (2)C10—C11—C12120.0 (3)
Cl2—Au1—Cl2i179.62 (3)C11—C12—C13120.0 (3)
Cl2i—Au1—Cl389.81 (2)C8—C13—C12120.1 (2)
Cl1—Au1—Cl290.19 (2)H1A—C1—H1C109.00
C2—N1—C6120.4 (2)C2—C1—H1A109.00
C6—N1—HN1117 (4)C2—C1—H1B109.00
C2—N1—HN1123 (4)C2—C1—H1C109.00
C1—C2—C3122.3 (2)H1A—C1—H1B109.00
N1—C2—C3119.4 (2)H1B—C1—H1C109.00
N1—C2—C1118.3 (2)C2—C3—H3119.00
C2—C3—C4122.3 (3)C4—C3—H3119.00
C3—C4—C8119.0 (2)C7i—C7—H7119.00
C5—C4—C8122.9 (2)C5—C7—H7119.00
C3—C4—C5117.9 (2)C8—C9—H9120.00
C6—C5—C7117.5 (2)C10—C9—H9120.00
C4—C5—C7125.4 (2)C9—C10—H10120.00
C4—C5—C6117.1 (2)C11—C10—H10120.00
C5—C6—C6i120.7 (2)C12—C11—H11120.00
N1—C6—C6i116.5 (2)C10—C11—H11120.00
N1—C6—C5122.8 (2)C11—C12—H12120.00
C5—C7—C7i121.6 (2)C13—C12—H12120.00
C4—C8—C13120.6 (2)C12—C13—H13120.00
C9—C8—C13119.1 (2)C8—C13—H13120.00
C4—C8—C9120.1 (2)
C6—N1—C2—C1178.1 (2)C7—C5—C6—N1175.7 (2)
C6—N1—C2—C30.8 (4)C7—C5—C6—C6i5.8 (3)
C2—N1—C6—C51.0 (4)C4—C5—C7—C7i175.3 (2)
C2—N1—C6—C6i177.6 (2)C6—C5—C7—C7i5.9 (3)
N1—C2—C3—C40.1 (4)N1—C6—C6i—N1i0.0 (3)
C1—C2—C3—C4177.3 (3)N1—C6—C6i—C5i178.6 (2)
C2—C3—C4—C52.2 (4)C5—C6—C6i—N1i178.6 (2)
C2—C3—C4—C8173.2 (2)C5—C6—C6i—C5i0.0 (4)
C3—C4—C5—C63.7 (3)C5—C7—C7i—C5i0.0 (4)
C3—C4—C5—C7175.1 (2)C4—C8—C9—C10172.4 (2)
C8—C4—C5—C6171.5 (2)C13—C8—C9—C100.9 (4)
C8—C4—C5—C79.6 (4)C4—C8—C13—C12173.2 (2)
C3—C4—C8—C942.3 (3)C9—C8—C13—C120.1 (4)
C3—C4—C8—C13130.8 (3)C8—C9—C10—C110.6 (4)
C5—C4—C8—C9142.5 (3)C9—C10—C11—C120.4 (5)
C5—C4—C8—C1344.4 (3)C10—C11—C12—C131.3 (4)
C4—C5—C6—N13.2 (3)C11—C12—C13—C81.0 (4)
C4—C5—C6—C6i175.3 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z+1; (vii) x1/2, y, z+3/2; (viii) x1/2, y+1/2, z+3/2; (ix) x1/2, y, z+1/2; (x) x1/2, y+1/2, z+1/2; (xi) x, y, z1; (xii) x+1/2, y, z1/2; (xiii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···N1i0.76 (5)2.28 (5)2.646 (3)111 (4)
C1—H1B···Cg3iii0.962.763.574 (3)143
Symmetry codes: (i) x, y+1/2, z; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C26H21N2)[AuCl4]
Mr700.22
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)150
a, b, c (Å)13.5195 (10), 22.9565 (17), 7.5556 (6)
V3)2345.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.75
Crystal size (mm)0.20 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.345, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
24337, 3265, 2835
Rint0.046
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.03
No. of reflections3265
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···N1i0.76 (5)2.28 (5)2.646 (3)111 (4)
C1—H1B···Cg3ii0.962.763.574 (3)143
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

NS and VA are grateful to Shahid Beheshti University for financial support.

References

First citationAbedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationKaraca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m479-m480
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds