metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m483-m484

Di­bromido(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)mercury(II)

aSchool of Chemistry, Damghan University of Basic Sciences, Damghan, Iran, bDepartment of Chemistry, University of Zabol, Zabol, Iran, and cIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: alizadeh@dubs.ac.ir

(Received 17 March 2009; accepted 18 March 2009; online 2 April 2009)

In the mol­ecule of the title compound, [HgBr2(C14H12N2)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand and by two Br atoms. In the crystal structure, weak inter­molecular C—H⋯Br hydrogen bonds link the mol­ecules into chains along the b axis. There are ππ contacts between the phenanthroline rings [centroid–centroid distances = 3.806 (4), 3.819 (4), 3.739 (3), 3.690 (3), 3.619 (4) and 3.674 (3) Å].

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.]); Craig et al. (1974[Craig, D. C., Farhangi, Y., Graddon, D. P. & Stephenson, N. C. (1974). Cryst. Struct. Commun. 3, 155-158.]); Hughes et al. (1985[Hughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521-1527.]); Kalateh, Ebadi et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.]); Kalateh, Norouzi et al. (2008[Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583-m1584.]); Perlepes et al. (1995[Perlepes, S. P., Kasselouri, S., Garoufis, A., Lutz, F., Bau, R. & Hadjiliadis, N. (1995). Polyhedron, 14, 1461-1470.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Xie et al. (2004[Xie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73-78.]); Yousefi et al. (2009[Yousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9-m10.]); Yousefi, Rashidi Vahid et al. (2008[Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339-m1340.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C14H12N2)]

  • Mr = 568.65

  • Monoclinic, P 21 /c

  • a = 7.8587 (7) Å

  • b = 10.5556 (8) Å

  • c = 18.7304 (13) Å

  • β = 97.517 (6)°

  • V = 1540.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.17 mm−1

  • T = 298 K

  • 0.49 × 0.44 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.])Tmin = 0.008, Tmax = 0.022

  • 11121 measured reflections

  • 4161 independent reflections

  • 3006 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.183

  • S = 1.12

  • 4161 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −2.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hg1—Br2 2.5053 (16)
Hg1—Br1 2.5156 (17)
N1—Hg1 2.345 (8)
N2—Hg1 2.340 (8)
Br2—Hg1—Br1 116.23 (6)
N1—Hg1—Br1 109.6 (2)
N1—Hg1—Br2 115.7 (2)
N2—Hg1—Br1 117.3 (2)
N2—Hg1—Br2 118.2 (2)
N2—Hg1—N1 71.2 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯Br2i 0.96 2.85 3.812 (18) 178
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several HgII complexes, with formula, [Hg(N—N)X2], (X=Br, Cl and I), such as [Hg(TPA)Br2], (II), (Xie et al., 2004), [Hg(TPD)Br2], (III), (Hughes et al., 1985), [Hg(NH(py)2)Br2], (IV), (Kalateh, Norouzi et al., 2008), [Hg(6-mbpy)Cl2], (V), (Ahmadi et al., 2008), [Hg(NH(py)2)Cl2], (VI), (Yousefi, Allahgholi Ghasri et al., 2009), [Hg(4,4'-dmbpy)I2], (VII), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (VIII), (Tadayon Pour et al., 2008) and [Hg(dmphen)I2], (IX), (Yousefi, Rashidi Vahid et al., 2008) [where TPA is tris(2-pyridyl)amine, TPD is N,N,N',N'-Tetramethyl-o-phenylenediamine, NH(py)2 is di-2-pyridylamine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and dmphen is 4,7-diphenyl-1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several HgII dimer complexes, with formula, [{HgBr(N—N)}2(µ-Br)2], such as [{HgBr(bipy)}2(µ-Br)2], (X), (Craig et al., 1974),[{HgBr(pquin)}2(µ-Br)2], (XI), (Perlepes et al., 1995) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (XII), (Kalateh, Ebadi et al., 2008) [where bipy is 2,2'-bipyridine and pquin is 2-(2'-pyridyl)quinoxaline] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 2,9-dimethyl-1,10-phenanthroline and by two Br atoms. The Hg-Br and Hg-N bond lengths (Allen et al., 1987) and angles (Table 1) are within normal ranges, and comparable with the corresponding values in (II) and (III).

In the crystal structure, weak intermolecular C-H···Br hydrogen bonds (Table 2) link the molecules into chains along the b-axis, in which they may be effective in the stabilization of the crystal structure (Fig. 2). The π-π contacts between the phenanthroline rings, Cg3···Cg2i, Cg3···Cg3ii, Cg4···Cg1i, Cg4···Cg2i, Cg4···Cg3ii and Cg4···Cg4i [symmetry codes: (i) 1 - x, -y, -z; (ii) 2 - x, -y, -z, where Cg1, Cg2, Cg3 and Cg4 are centroids of the rings A (Hg1/N1/N2/C13/C14), B (N1/C2-C5/C14), C (N2/C8-C11/C13) and D (C5-C8/C13/C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.806 (4), 3.819 (4), 3.739 (3), 3.690 (3), 3.619 (4) and 3.674 (3) Å, respectively.

Related literature top

For related structures, see: Ahmadi et al. (2008); Craig et al. (1974); Hughes et al. (1985); Kalateh, Ebadi et al. (2008); Kalateh, Norouzi et al. (2008); Perlepes et al. (1995); Tadayon Pour et al. (2008); Xie et al. (2004); Yousefi, Allahgholi Ghasri et al. (2009); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), a solution of 2,9-dimethyl-1,10-phenanthroline (0.25 g, 1.20 mmol) in methanol (10 ml) was added to a solution of HgBr2 (0.43 g, 1.20 mmol) in methanol (20 ml) at room temperature. Crystals suitable for X-ray analysis were obtained by methanol diffusion to a colorless solution in DMSO and isolated after one week (yield; 0.51 g, 74.7%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N')mercury(II) top
Crystal data top
[HgBr2(C14H12N2)]F(000) = 1040
Mr = 568.65Dx = 2.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1005 reflections
a = 7.8587 (7) Åθ = 2.2–29.2°
b = 10.5556 (8) ŵ = 15.17 mm1
c = 18.7304 (13) ÅT = 298 K
β = 97.517 (6)°Block, colorless
V = 1540.4 (2) Å30.49 × 0.44 × 0.26 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4161 independent reflections
Radiation source: fine-focus sealed tube3006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: numerical
Shape of crystal determined optically
h = 1010
Tmin = 0.008, Tmax = 0.022k = 1314
11121 measured reflectionsl = 1925
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0825P)2 + 6.5584P]
where P = (Fo2 + 2Fc2)/3
4161 reflections(Δ/σ)max = 0.007
172 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 2.40 e Å3
Crystal data top
[HgBr2(C14H12N2)]V = 1540.4 (2) Å3
Mr = 568.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8587 (7) ŵ = 15.17 mm1
b = 10.5556 (8) ÅT = 298 K
c = 18.7304 (13) Å0.49 × 0.44 × 0.26 mm
β = 97.517 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4161 independent reflections
Absorption correction: numerical
Shape of crystal determined optically
3006 reflections with I > 2σ(I)
Tmin = 0.008, Tmax = 0.022Rint = 0.093
11121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.12Δρmax = 1.23 e Å3
4161 reflectionsΔρmin = 2.40 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.21080 (7)0.79014 (4)0.39095 (3)0.05349 (18)
Br10.0605 (2)0.8266 (2)0.30622 (9)0.0836 (5)
Br20.4351 (2)0.95948 (12)0.39430 (9)0.0783 (5)
N10.3074 (11)0.5823 (8)0.3777 (5)0.0424 (18)
N20.1876 (11)0.6779 (8)0.4970 (5)0.0376 (17)
C10.376 (3)0.6301 (15)0.2566 (8)0.086 (5)
H1A0.45180.69850.27300.103*
H1B0.26410.66320.24000.103*
H1C0.42000.58660.21790.103*
C20.3645 (15)0.5411 (10)0.3164 (5)0.043 (2)
C30.4185 (17)0.4150 (11)0.3120 (7)0.056 (3)
H30.45950.38570.27060.067*
C40.4101 (14)0.3354 (11)0.3692 (7)0.052 (3)
H40.44450.25150.36590.062*
C50.3508 (12)0.3775 (9)0.4323 (6)0.040 (2)
C60.3390 (15)0.2991 (10)0.4931 (8)0.054 (3)
H60.37450.21510.49250.065*
C70.2778 (17)0.3444 (11)0.5512 (8)0.059 (3)
H70.27100.29090.59010.071*
C80.2221 (14)0.4732 (10)0.5553 (6)0.045 (2)
C90.1555 (16)0.5221 (12)0.6139 (6)0.052 (3)
H90.14280.47040.65310.063*
C100.1082 (17)0.6457 (15)0.6147 (7)0.060 (3)
H100.06460.67890.65460.072*
C110.1255 (15)0.7242 (11)0.5544 (6)0.049 (2)
C120.078 (2)0.8630 (13)0.5530 (8)0.068 (4)
H12A0.00890.87900.51290.081*
H12B0.17730.91330.54830.081*
H12C0.03400.88470.59700.081*
C130.2361 (12)0.5538 (9)0.4964 (5)0.0353 (18)
C140.2975 (11)0.5055 (9)0.4335 (6)0.038 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0797 (3)0.0314 (2)0.0497 (3)0.00853 (18)0.0099 (2)0.00815 (17)
Br10.0775 (9)0.1107 (13)0.0618 (9)0.0161 (9)0.0063 (7)0.0348 (9)
Br20.1172 (12)0.0377 (6)0.0795 (10)0.0148 (7)0.0114 (9)0.0107 (6)
N10.059 (5)0.029 (4)0.039 (4)0.004 (3)0.002 (4)0.004 (3)
N20.046 (4)0.034 (4)0.033 (4)0.002 (3)0.005 (3)0.001 (3)
C10.148 (16)0.056 (8)0.059 (9)0.013 (9)0.030 (10)0.006 (7)
C20.062 (6)0.038 (5)0.029 (5)0.000 (4)0.003 (4)0.005 (4)
C30.080 (8)0.040 (6)0.050 (6)0.001 (5)0.016 (6)0.015 (5)
C40.046 (6)0.034 (5)0.074 (8)0.005 (4)0.004 (5)0.007 (5)
C50.037 (5)0.031 (4)0.050 (6)0.002 (4)0.005 (4)0.001 (4)
C60.055 (6)0.034 (5)0.071 (8)0.006 (4)0.001 (6)0.015 (5)
C70.073 (8)0.036 (6)0.064 (8)0.006 (5)0.002 (6)0.023 (5)
C80.050 (6)0.041 (5)0.041 (5)0.010 (4)0.002 (4)0.013 (4)
C90.064 (7)0.052 (6)0.039 (6)0.008 (5)0.000 (5)0.007 (5)
C100.059 (7)0.078 (9)0.045 (6)0.015 (6)0.020 (5)0.013 (6)
C110.057 (6)0.045 (6)0.043 (6)0.001 (5)0.001 (5)0.002 (4)
C120.102 (11)0.048 (7)0.055 (7)0.008 (7)0.014 (7)0.008 (6)
C130.036 (4)0.032 (4)0.037 (5)0.003 (3)0.001 (4)0.006 (4)
C140.031 (4)0.035 (4)0.045 (5)0.001 (3)0.005 (4)0.005 (4)
Geometric parameters (Å, º) top
Hg1—Br22.5053 (16)C6—H60.9300
Hg1—Br12.5156 (17)C7—C81.433 (16)
N1—Hg12.345 (8)C7—H70.9300
N2—Hg12.340 (8)C8—C91.377 (17)
C1—C21.474 (19)C8—C131.409 (13)
C1—H1A0.9600C9—C101.36 (2)
C1—H1B0.9600C9—H90.9300
C1—H1C0.9600C10—C111.422 (18)
C2—N11.359 (13)C10—H100.9300
C2—C31.403 (15)C11—N21.330 (14)
C3—C41.370 (18)C11—C121.512 (18)
C3—H30.9300C12—H12A0.9600
C4—C51.400 (17)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C141.416 (13)C13—N21.365 (12)
C5—C61.421 (16)C13—C141.425 (15)
C6—C71.33 (2)C14—N11.333 (13)
Br2—Hg1—Br1116.23 (6)C7—C6—C5120.9 (10)
N1—Hg1—Br1109.6 (2)C7—C6—H6119.6
N1—Hg1—Br2115.7 (2)C5—C6—H6119.6
N2—Hg1—Br1117.3 (2)C6—C7—C8122.0 (11)
N2—Hg1—Br2118.2 (2)C6—C7—H7119.0
N2—Hg1—N171.2 (3)C8—C7—H7119.0
C14—N1—C2121.8 (9)C9—C8—C13118.3 (10)
C14—N1—Hg1115.7 (7)C9—C8—C7123.4 (11)
C2—N1—Hg1122.5 (7)C13—C8—C7118.4 (11)
C11—N2—C13119.4 (9)C10—C9—C8120.2 (11)
C11—N2—Hg1125.3 (7)C10—C9—H9119.9
C13—N2—Hg1115.2 (6)C8—C9—H9119.9
C2—C1—H1A109.5C9—C10—C11119.8 (12)
C2—C1—H1B109.5C9—C10—H10120.1
H1A—C1—H1B109.5C11—C10—H10120.1
C2—C1—H1C109.5N2—C11—C10120.8 (11)
H1A—C1—H1C109.5N2—C11—C12117.3 (11)
H1B—C1—H1C109.5C10—C11—C12121.9 (11)
N1—C2—C3119.4 (10)C11—C12—H12A109.5
N1—C2—C1119.9 (10)C11—C12—H12B109.5
C3—C2—C1120.7 (11)H12A—C12—H12B109.5
C4—C3—C2119.3 (11)C11—C12—H12C109.5
C4—C3—H3120.3H12A—C12—H12C109.5
C2—C3—H3120.3H12B—C12—H12C109.5
C3—C4—C5121.5 (10)N2—C13—C8121.5 (10)
C3—C4—H4119.3N2—C13—C14118.4 (8)
C5—C4—H4119.3C8—C13—C14120.1 (9)
C4—C5—C14116.7 (10)N1—C14—C5121.3 (10)
C4—C5—C6123.8 (10)N1—C14—C13119.4 (9)
C14—C5—C6119.5 (10)C5—C14—C13119.2 (9)
N1—C2—C3—C41.0 (18)C13—C14—N1—C2179.8 (9)
C1—C2—C3—C4178.4 (13)C5—C14—N1—Hg1179.7 (7)
C2—C3—C4—C50.8 (19)C13—C14—N1—Hg12.0 (11)
C3—C4—C5—C141.0 (16)C3—C2—N1—C141.6 (16)
C3—C4—C5—C6179.8 (11)C1—C2—N1—C14178.9 (12)
C4—C5—C6—C7178.5 (11)C3—C2—N1—Hg1179.2 (9)
C14—C5—C6—C70.3 (17)C1—C2—N1—Hg13.4 (16)
C5—C6—C7—C80.3 (19)C10—C11—N2—C130.4 (16)
C6—C7—C8—C9178.8 (12)C12—C11—N2—C13178.6 (10)
C6—C7—C8—C131.1 (18)C10—C11—N2—Hg1176.5 (8)
C13—C8—C9—C101.3 (17)C12—C11—N2—Hg14.5 (15)
C7—C8—C9—C10178.8 (12)C8—C13—N2—C110.0 (15)
C8—C9—C10—C110.9 (19)C14—C13—N2—C11178.2 (9)
C9—C10—C11—N20.0 (19)C8—C13—N2—Hg1177.2 (7)
C9—C10—C11—C12178.9 (12)C14—C13—N2—Hg11.0 (11)
C9—C8—C13—N20.9 (15)C11—N2—Hg1—N1178.4 (9)
C7—C8—C13—N2179.2 (10)C13—N2—Hg1—N11.4 (6)
C9—C8—C13—C14177.3 (9)C11—N2—Hg1—Br271.9 (9)
C7—C8—C13—C142.6 (15)C13—N2—Hg1—Br2111.1 (6)
C4—C5—C14—N11.6 (14)C11—N2—Hg1—Br175.5 (9)
C6—C5—C14—N1179.6 (9)C13—N2—Hg1—Br1101.6 (6)
C4—C5—C14—C13179.9 (9)C14—N1—Hg1—N21.7 (7)
C6—C5—C14—C131.2 (14)C2—N1—Hg1—N2179.6 (9)
N2—C13—C14—N10.7 (14)C14—N1—Hg1—Br2114.7 (7)
C8—C13—C14—N1178.9 (9)C2—N1—Hg1—Br267.5 (8)
N2—C13—C14—C5179.1 (8)C14—N1—Hg1—Br1111.4 (7)
C8—C13—C14—C52.7 (14)C2—N1—Hg1—Br166.4 (8)
C5—C14—N1—C21.9 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br2i0.962.853.812 (18)178
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[HgBr2(C14H12N2)]
Mr568.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.8587 (7), 10.5556 (8), 18.7304 (13)
β (°) 97.517 (6)
V3)1540.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)15.17
Crystal size (mm)0.49 × 0.44 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
Shape of crystal determined optically
Tmin, Tmax0.008, 0.022
No. of measured, independent and
observed [I > 2σ(I)] reflections
11121, 4161, 3006
Rint0.093
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.183, 1.12
No. of reflections4161
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 2.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hg1—Br22.5053 (16)N1—Hg12.345 (8)
Hg1—Br12.5156 (17)N2—Hg12.340 (8)
Br2—Hg1—Br1116.23 (6)N2—Hg1—Br1117.3 (2)
N1—Hg1—Br1109.6 (2)N2—Hg1—Br2118.2 (2)
N1—Hg1—Br2115.7 (2)N2—Hg1—N171.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···Br2i0.962.853.812 (18)178.00
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Damghan University of Basic Sciences for financial support.

References

First citationAhmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraig, D. C., Farhangi, Y., Graddon, D. P. & Stephenson, N. C. (1974). Cryst. Struct. Commun. 3, 155–158.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521–1527.  CSD CrossRef CAS Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerlepes, S. P., Kasselouri, S., Garoufis, A., Lutz, F., Bau, R. & Hadjiliadis, N. (1995). Polyhedron, 14, 1461–1470.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationYousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9–m10.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m483-m484
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds