organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-amino-4-(3-chloro­prop­­oxy)-5-meth­oxy­benzoate

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 25 March 2009; accepted 27 March 2009; online 2 April 2009)

The asymmetric unit of the title compound, C12H16ClNO4, contains two crystallographically independent mol­ecules. The benzene rings of the two independent mol­ecules are oriented at a dihedral angle of 88.50 (3)°. Intra­molecular N—H⋯O hydrogen bonds involving the methoxybenzoate carbonyl group in each molecule result in the formation of two planar, six-membered rings, oriented at dihedral angles of 1.39 (3) and 0.68 (3)° with respect to the adjacent benzene rings. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis.

Related literature

For general background to quinazoline derivatives, see: Knesl et al. (2006[Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16ClNO4

  • Mr = 273.71

  • Triclinic, [P \overline 1]

  • a = 8.1080 (16) Å

  • b = 9.818 (2) Å

  • c = 17.739 (3) Å

  • α = 82.07 (2)°

  • β = 83.41 (2)°

  • γ = 89.37 (3)°

  • V = 1389.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.921, Tmax = 0.973

  • 5297 measured reflections

  • 4919 independent reflections

  • 2591 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.157

  • S = 1.01

  • 4919 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 2.07 2.709 (4) 131
N1—H1B⋯O8i 0.86 2.36 3.155 (4) 154
N2—H2C⋯O8 0.86 2.09 2.719 (4) 130
N2—H2C⋯O8ii 0.86 2.43 3.216 (4) 152
N2—H2D⋯O3 0.86 2.31 3.119 (4) 156
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C4-C9) and A' (C16-C21) are, of course, planar and they are oriented at a dihedral angle of A/A' = 88.50 (3)°. Intramolecular N-H···O hydrogen bonds (Table 1) link the two molecules, also they result in the formations of two six-membered planar rings: B (O3/N1/C6/C7/C11/H1A) and B' (O8/N2/C19/C20/C23/H2C). The dihedral angles between the adjacent rings in each molecule are A/B = 1.39 (3)° and A'/B' = 0.68 (3)°. So, they are also coplanar.

In the crystal structure, intra- and intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains along the a axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to quinazoline derivatives, see: Knesl et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a suspension of methyl 4-(3-chloro- propoxy)-5-methoxy-2-nitrobenzoate (0.016 mol) in HCl (100 ml) was heated at 323-333 K for 5 min, and then a solution of tin(II) chloride (16.0 g, 0.1 mol) in HCl (20 ml) was added dropwise. The reaction mixture was heated at 363-373 K for 45 min. The solid formed was collected and dissolved in water (300 ml). A solution of sodium hydroxide (2N) was added to obtain pH = 8-9. The aqueous solution was then extracted with ethyl acetate (3 × 100 ml). The combined organic layers were dried over magnesium sulfate and concentrated in vacuo to give the title compound (yield; 2.3 g, 51.1%, m.p. 377 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted.
Methyl 2-amino-4-(3-chloropropoxy)-5-methoxybenzoate top
Crystal data top
C12H16ClNO4Z = 4
Mr = 273.71F(000) = 576
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Melting point: 377 K
a = 8.1080 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.818 (2) ÅCell parameters from 25 reflections
c = 17.739 (3) Åθ = 9–13°
α = 82.07 (2)°µ = 0.28 mm1
β = 83.41 (2)°T = 294 K
γ = 89.37 (3)°Block, colorless
V = 1389.3 (5) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2591 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.3°, θmin = 1.2°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.921, Tmax = 0.973l = 2020
5297 measured reflections3 standard reflections every 120 min
4919 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.07P)2]
where P = (Fo2 + 2Fc2)/3
4919 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H16ClNO4γ = 89.37 (3)°
Mr = 273.71V = 1389.3 (5) Å3
Triclinic, P1Z = 4
a = 8.1080 (16) ÅMo Kα radiation
b = 9.818 (2) ŵ = 0.28 mm1
c = 17.739 (3) ÅT = 294 K
α = 82.07 (2)°0.30 × 0.20 × 0.10 mm
β = 83.41 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2591 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.921, Tmax = 0.9733 standard reflections every 120 min
5297 measured reflections intensity decay: 1%
4919 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
4919 reflectionsΔρmin = 0.22 e Å3
325 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15324 (14)0.65740 (12)0.56167 (7)0.0986 (4)
Cl20.35436 (14)0.80677 (12)0.56017 (6)0.0970 (4)
O10.0021 (3)0.9054 (2)0.70177 (14)0.0748 (7)
O20.2315 (3)1.0836 (2)0.66023 (13)0.0713 (7)
O30.5434 (3)0.8244 (3)0.94591 (14)0.0784 (7)
O40.6278 (3)1.0083 (3)0.85978 (14)0.0764 (7)
O50.4986 (3)0.4748 (2)0.69292 (14)0.0743 (7)
O60.7348 (3)0.3139 (2)0.65050 (13)0.0713 (7)
O71.1359 (3)0.2938 (2)0.84821 (13)0.0771 (8)
O81.0455 (3)0.4302 (3)0.93563 (13)0.0753 (7)
N10.2572 (4)0.7010 (3)0.92623 (18)0.0916 (10)
H1A0.33730.69860.95420.110*
H1B0.17700.64250.93810.110*
N20.7544 (4)0.5646 (3)0.91837 (16)0.0812 (10)
H2C0.83420.55230.94660.097*
H2D0.67290.61730.93030.097*
C10.1746 (5)0.8327 (4)0.5747 (2)0.0916 (13)
H1C0.06640.87700.56460.110*
H1D0.24470.87840.53830.110*
C20.2507 (4)0.8486 (4)0.6564 (3)0.0880 (13)
H2A0.28400.94360.65740.106*
H2B0.35030.79240.66850.106*
C30.1379 (4)0.8095 (4)0.7191 (2)0.0764 (11)
H3A0.19660.81680.76910.092*
H3B0.09830.71600.71840.092*
C40.1200 (4)0.8952 (3)0.7498 (2)0.0599 (9)
C50.1262 (4)0.8003 (4)0.8155 (2)0.0660 (9)
H5A0.04140.73560.82940.079*
C60.2574 (4)0.7991 (3)0.8619 (2)0.0591 (9)
C70.3857 (4)0.8969 (3)0.84021 (18)0.0552 (8)
C80.3773 (4)0.9923 (3)0.77157 (18)0.0536 (8)
H8A0.46281.05610.75660.064*
C90.2495 (4)0.9941 (3)0.72703 (19)0.0553 (8)
C100.3629 (5)1.1770 (4)0.6326 (2)0.0895 (13)
H10A0.33641.23300.58680.134*
H10B0.46301.12690.62130.134*
H10C0.37861.23450.67080.134*
C110.5223 (4)0.9032 (3)0.88748 (19)0.0562 (8)
C120.7633 (5)1.0256 (4)0.9052 (2)0.0924 (13)
H12A0.83181.10180.88070.139*
H12B0.82880.94340.90930.139*
H12C0.71851.04290.95540.139*
C130.3339 (5)0.6258 (4)0.5663 (2)0.0937 (14)
H13A0.26700.60440.52750.112*
H13B0.44270.58560.55640.112*
C140.2526 (4)0.5629 (4)0.6458 (3)0.0914 (13)
H14A0.15150.61300.65800.110*
H14B0.22140.46860.64340.110*
C150.3612 (4)0.5635 (4)0.7106 (2)0.0767 (11)
H15A0.40010.65590.71260.092*
H15B0.29970.52900.75950.092*
C160.6215 (4)0.4591 (3)0.7408 (2)0.0581 (9)
C170.7518 (4)0.3703 (3)0.71711 (18)0.0546 (8)
C180.8796 (4)0.3485 (3)0.76205 (17)0.0516 (8)
H18A0.96530.29040.74760.062*
C190.8872 (4)0.4108 (3)0.83011 (17)0.0485 (7)
C200.7570 (4)0.4991 (3)0.85342 (19)0.0575 (8)
C210.6255 (4)0.5203 (3)0.8067 (2)0.0618 (9)
H21A0.53850.57740.82080.074*
C220.8708 (5)0.2353 (4)0.6222 (2)0.0900 (13)
H22A0.84560.20110.57660.135*
H22B0.89050.15950.66040.135*
H22C0.96820.29250.61040.135*
C231.0255 (4)0.3818 (3)0.87674 (18)0.0523 (8)
C241.2755 (5)0.2593 (4)0.8929 (2)0.0937 (14)
H24A1.34820.19680.86830.141*
H24B1.23430.21690.94350.141*
H24C1.33560.34160.89620.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0972 (8)0.1075 (9)0.0950 (8)0.0024 (6)0.0306 (6)0.0116 (6)
Cl20.1009 (8)0.1059 (9)0.0894 (8)0.0022 (6)0.0347 (6)0.0126 (6)
O10.0498 (14)0.0805 (17)0.0951 (19)0.0060 (12)0.0240 (13)0.0026 (14)
O20.0595 (15)0.0726 (16)0.0808 (17)0.0087 (12)0.0293 (13)0.0114 (13)
O30.0785 (17)0.0769 (17)0.0805 (18)0.0031 (13)0.0326 (14)0.0056 (14)
O40.0662 (16)0.0832 (18)0.0821 (17)0.0119 (14)0.0315 (13)0.0007 (14)
O50.0503 (14)0.0827 (16)0.0981 (19)0.0173 (12)0.0337 (13)0.0217 (14)
O60.0619 (15)0.0820 (17)0.0800 (17)0.0160 (12)0.0338 (13)0.0268 (14)
O70.0794 (17)0.0878 (18)0.0771 (17)0.0366 (14)0.0420 (14)0.0324 (14)
O80.0732 (16)0.0944 (19)0.0674 (16)0.0184 (13)0.0250 (13)0.0315 (14)
N10.090 (2)0.090 (2)0.089 (2)0.0231 (19)0.0257 (19)0.021 (2)
N20.083 (2)0.097 (2)0.072 (2)0.0380 (18)0.0256 (17)0.0295 (18)
C10.077 (3)0.104 (3)0.092 (3)0.018 (2)0.038 (2)0.017 (3)
C20.051 (2)0.087 (3)0.127 (4)0.0035 (19)0.026 (2)0.006 (3)
C30.052 (2)0.093 (3)0.086 (3)0.016 (2)0.0068 (19)0.017 (2)
C40.0443 (19)0.067 (2)0.071 (2)0.0045 (16)0.0116 (17)0.0129 (19)
C50.059 (2)0.063 (2)0.076 (3)0.0071 (17)0.0097 (19)0.0052 (19)
C60.055 (2)0.056 (2)0.065 (2)0.0012 (16)0.0076 (17)0.0035 (17)
C70.0506 (19)0.055 (2)0.061 (2)0.0074 (16)0.0110 (16)0.0096 (17)
C80.0398 (17)0.059 (2)0.063 (2)0.0000 (14)0.0102 (15)0.0059 (17)
C90.0496 (19)0.053 (2)0.064 (2)0.0042 (15)0.0119 (16)0.0044 (16)
C100.087 (3)0.084 (3)0.092 (3)0.022 (2)0.033 (2)0.027 (2)
C110.057 (2)0.055 (2)0.057 (2)0.0072 (17)0.0102 (17)0.0104 (17)
C120.075 (3)0.100 (3)0.106 (3)0.013 (2)0.041 (2)0.003 (3)
C130.089 (3)0.115 (3)0.095 (3)0.047 (3)0.051 (3)0.045 (3)
C140.054 (2)0.087 (3)0.140 (4)0.011 (2)0.039 (3)0.018 (3)
C150.045 (2)0.091 (3)0.092 (3)0.0118 (19)0.0162 (19)0.000 (2)
C160.0459 (18)0.060 (2)0.071 (2)0.0022 (15)0.0211 (17)0.0046 (18)
C170.0503 (19)0.058 (2)0.059 (2)0.0051 (15)0.0188 (16)0.0122 (16)
C180.0455 (17)0.0504 (19)0.060 (2)0.0031 (14)0.0135 (15)0.0041 (16)
C190.0481 (18)0.0469 (18)0.0492 (19)0.0014 (14)0.0075 (14)0.0008 (14)
C200.060 (2)0.057 (2)0.055 (2)0.0044 (16)0.0116 (17)0.0024 (16)
C210.0463 (19)0.065 (2)0.073 (2)0.0118 (16)0.0070 (17)0.0062 (18)
C220.094 (3)0.103 (3)0.089 (3)0.031 (2)0.046 (2)0.043 (2)
C230.057 (2)0.0484 (19)0.053 (2)0.0024 (15)0.0117 (16)0.0073 (16)
C240.087 (3)0.109 (3)0.099 (3)0.049 (2)0.053 (2)0.031 (3)
Geometric parameters (Å, º) top
Cl1—C11.772 (4)C6—C71.407 (4)
Cl2—C131.773 (4)C7—C81.438 (4)
O1—C41.373 (4)C7—C111.471 (4)
O1—C31.434 (4)C8—C91.372 (4)
O2—C91.395 (4)C8—H8A0.9300
O2—C101.412 (4)C10—H10A0.9600
O3—C111.232 (4)C10—H10B0.9600
O4—C111.350 (4)C10—H10C0.9600
O4—C121.459 (4)C12—H12A0.9600
O5—C161.376 (3)C12—H12B0.9600
O5—C151.439 (4)C12—H12C0.9600
O6—C171.394 (3)C13—C141.536 (6)
O6—C221.423 (4)C13—H13A0.9700
O7—C231.342 (4)C13—H13B0.9700
O7—C241.466 (4)C14—C151.527 (5)
O8—C231.233 (3)C14—H14A0.9700
N1—C61.388 (4)C14—H14B0.9700
N1—H1A0.8600C15—H15A0.9700
N1—H1B0.8600C15—H15B0.9700
N2—C201.392 (4)C16—C211.389 (4)
N2—H2C0.8600C16—C171.425 (4)
N2—H2D0.8600C17—C181.376 (4)
C1—C21.537 (5)C18—C191.434 (4)
C1—H1C0.9700C18—H18A0.9300
C1—H1D0.9700C19—C201.420 (4)
C2—C31.525 (5)C19—C231.471 (4)
C2—H2A0.9700C20—C211.420 (4)
C2—H2B0.9700C21—H21A0.9300
C3—H3A0.9700C22—H22A0.9600
C3—H3B0.9700C22—H22B0.9600
C4—C51.393 (5)C22—H22C0.9600
C4—C91.423 (4)C24—H24A0.9600
C5—C61.417 (4)C24—H24B0.9600
C5—H5A0.9300C24—H24C0.9600
C4—O1—C3118.2 (3)O4—C12—H12A109.5
C9—O2—C10117.0 (2)O4—C12—H12B109.5
C11—O4—C12115.7 (3)H12A—C12—H12B109.5
C16—O5—C15118.5 (3)O4—C12—H12C109.5
C17—O6—C22116.5 (2)H12A—C12—H12C109.5
C23—O7—C24115.1 (3)H12B—C12—H12C109.5
C6—N1—H1A120.0C14—C13—Cl2111.2 (3)
C6—N1—H1B120.0C14—C13—H13A109.4
H1A—N1—H1B120.0Cl2—C13—H13A109.4
C20—N2—H2C120.0C14—C13—H13B109.4
C20—N2—H2D120.0Cl2—C13—H13B109.4
H2C—N2—H2D120.0H13A—C13—H13B108.0
C2—C1—Cl1111.6 (3)C15—C14—C13114.9 (3)
C2—C1—H1C109.3C15—C14—H14A108.5
Cl1—C1—H1C109.3C13—C14—H14A108.5
C2—C1—H1D109.3C15—C14—H14B108.5
Cl1—C1—H1D109.3C13—C14—H14B108.5
H1C—C1—H1D108.0H14A—C14—H14B107.5
C3—C2—C1115.5 (3)O5—C15—C14105.4 (3)
C3—C2—H2A108.4O5—C15—H15A110.7
C1—C2—H2A108.4C14—C15—H15A110.7
C3—C2—H2B108.4O5—C15—H15B110.7
C1—C2—H2B108.4C14—C15—H15B110.7
H2A—C2—H2B107.5H15A—C15—H15B108.8
O1—C3—C2105.3 (3)O5—C16—C21125.9 (3)
O1—C3—H3A110.7O5—C16—C17113.5 (3)
C2—C3—H3A110.7C21—C16—C17120.6 (3)
O1—C3—H3B110.7C18—C17—O6126.9 (3)
C2—C3—H3B110.7C18—C17—C16117.2 (3)
H3A—C3—H3B108.8O6—C17—C16115.9 (3)
O1—C4—C5126.5 (3)C17—C18—C19123.3 (3)
O1—C4—C9113.7 (3)C17—C18—H18A118.4
C5—C4—C9119.8 (3)C19—C18—H18A118.4
C4—C5—C6122.2 (3)C20—C19—C18119.2 (3)
C4—C5—H5A118.9C20—C19—C23119.8 (3)
C6—C5—H5A118.9C18—C19—C23120.9 (3)
N1—C6—C7122.1 (3)N2—C20—C19123.2 (3)
N1—C6—C5119.4 (3)N2—C20—C21119.9 (3)
C7—C6—C5118.5 (3)C19—C20—C21116.9 (3)
C6—C7—C8118.1 (3)C16—C21—C20122.7 (3)
C6—C7—C11120.8 (3)C16—C21—H21A118.6
C8—C7—C11121.0 (3)C20—C21—H21A118.6
C9—C8—C7123.3 (3)O6—C22—H22A109.5
C9—C8—H8A118.3O6—C22—H22B109.5
C7—C8—H8A118.3H22A—C22—H22B109.5
C8—C9—O2126.8 (3)O6—C22—H22C109.5
C8—C9—C4118.0 (3)H22A—C22—H22C109.5
O2—C9—C4115.2 (3)H22B—C22—H22C109.5
O2—C10—H10A109.5O8—C23—O7120.9 (3)
O2—C10—H10B109.5O8—C23—C19126.5 (3)
H10A—C10—H10B109.5O7—C23—C19112.6 (3)
O2—C10—H10C109.5O7—C24—H24A109.5
H10A—C10—H10C109.5O7—C24—H24B109.5
H10B—C10—H10C109.5H24A—C24—H24B109.5
O3—C11—O4121.7 (3)O7—C24—H24C109.5
O3—C11—C7126.1 (3)H24A—C24—H24C109.5
O4—C11—C7112.1 (3)H24B—C24—H24C109.5
Cl1—C1—C2—C371.5 (4)Cl2—C13—C14—C1570.8 (4)
C4—O1—C3—C2179.4 (3)C16—O5—C15—C14177.8 (3)
C1—C2—C3—O163.9 (4)C13—C14—C15—O564.7 (4)
C3—O1—C4—C50.5 (5)C15—O5—C16—C210.9 (5)
C3—O1—C4—C9179.3 (3)C15—O5—C16—C17179.3 (3)
O1—C4—C5—C6179.4 (3)C22—O6—C17—C186.1 (5)
C9—C4—C5—C60.8 (5)C22—O6—C17—C16174.4 (3)
C4—C5—C6—N1179.4 (3)O5—C16—C17—C18179.7 (3)
C4—C5—C6—C70.4 (5)C21—C16—C17—C180.1 (5)
N1—C6—C7—C8178.5 (3)O5—C16—C17—O60.2 (4)
C5—C6—C7—C80.4 (5)C21—C16—C17—O6179.6 (3)
N1—C6—C7—C113.0 (5)O6—C17—C18—C19179.8 (3)
C5—C6—C7—C11178.1 (3)C16—C17—C18—C190.4 (5)
C6—C7—C8—C91.0 (5)C17—C18—C19—C200.4 (5)
C11—C7—C8—C9177.5 (3)C17—C18—C19—C23178.9 (3)
C7—C8—C9—O2179.5 (3)C18—C19—C20—N2179.7 (3)
C7—C8—C9—C40.7 (5)C23—C19—C20—N21.8 (5)
C10—O2—C9—C84.2 (5)C18—C19—C20—C210.0 (4)
C10—O2—C9—C4175.7 (3)C23—C19—C20—C21178.6 (3)
O1—C4—C9—C8179.9 (3)O5—C16—C21—C20180.0 (3)
C5—C4—C9—C80.2 (5)C17—C16—C21—C200.2 (5)
O1—C4—C9—O20.2 (4)N2—C20—C21—C16179.4 (3)
C5—C4—C9—O2179.6 (3)C19—C20—C21—C160.2 (5)
C12—O4—C11—O32.5 (5)C24—O7—C23—O81.3 (5)
C12—O4—C11—C7177.5 (3)C24—O7—C23—C19179.1 (3)
C6—C7—C11—O33.5 (5)C20—C19—C23—O82.1 (5)
C8—C7—C11—O3177.9 (3)C18—C19—C23—O8179.3 (3)
C6—C7—C11—O4176.4 (3)C20—C19—C23—O7178.4 (3)
C8—C7—C11—O42.1 (4)C18—C19—C23—O70.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.072.709 (4)131
N1—H1B···O8i0.862.363.155 (4)154
N2—H2C···O80.862.092.719 (4)130
N2—H2C···O8ii0.862.433.216 (4)152
N2—H2D···O30.862.313.119 (4)156
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H16ClNO4
Mr273.71
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.1080 (16), 9.818 (2), 17.739 (3)
α, β, γ (°)82.07 (2), 83.41 (2), 89.37 (3)
V3)1389.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.921, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5297, 4919, 2591
Rint0.041
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.157, 1.01
No. of reflections4919
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.072.709 (4)131
N1—H1B···O8i0.862.363.155 (4)154
N2—H2C···O80.862.092.719 (4)130
N2—H2C···O8ii0.862.433.216 (4)152
N2—H2D···O30.862.313.119 (4)156
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKnesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds