organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-bromo-2-[meth­yl(methyl­sulfon­yl)amino]benzoate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 28 March 2009; accepted 30 March 2009; online 2 April 2009)

The title compound, C10H12BrNO4S, is an inter­mediate in the synthesis of benzothia­zine. The planar methyl ester group (maximum deviation is 0.0065 Å) is oriented at a dihedral angle of 39.09 (13)° with respect to the aromatic ring. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, through R22(10) ring motifs.

Related literature

For related structures, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]); Shafiq et al. (2009[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.]); Tahir et al. (2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12BrNO4S

  • Mr = 322.18

  • Monoclinic, P 21 /c

  • a = 6.0798 (1) Å

  • b = 10.7853 (3) Å

  • c = 19.5206 (4) Å

  • β = 90.306 (1)°

  • V = 1280.00 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 296 K

  • 0.28 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.766

  • 13682 measured reflections

  • 3170 independent reflections

  • 2215 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.04

  • 3170 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.43 3.319 (3) 159
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We have reported the crystal structures of some benzothiazine derivatives (Shafiq et al., 2009; Tahir et al., 2008; Arshad et al., 2008). The title compound is an intermediate for the synthesis of benzothiazine and we report herein its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is of course planar. The methyl ester moiety B (O2/C7/O1/C8) is also planar, and they are oriented at a dihedral angle of 39.09 (13)°.

In the crystal structure, weak intermolecular C-H···O interactions link the molecules into centrosymmetric dimers through R22(10) ring motifs (Fig. 2) (Bernstein et al., 1995).

Related literature top

For related structures, see: Arshad et al. (2008); Shafiq et al. (2009); Tahir et al. (2008). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, methyl-2-amino-5-bromobenzoate (1 g, 4 mmol) was added into dichloromethane (10 ml) in a round bottom flask. Then, a solution of methanesulfonyl chloride (0.55 g, 48 mmol) in dichloromethane (10 ml) was added to the mixture in 10-15 min. The mixture was stirred at 333-343 K for 2-3 d. After the completion of reaction, the solvent was evaporated under reduced pressure to get methyl-5-bromo-2-[(methylsulfonyl)amino]benzoate. Methyl-5-bromo-2-[(methylsulfonyl)amino] benzoate (1 g, 33 mmol) was added into dimethylformamide (5 ml), and then to a suspension of NaH (0.15 g, 66 mmol) in dimethylformamide (10 ml). The mixture was stirred at room temperature for 14-16 h, then the title compound was obtained.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 5-bromo-2-[methyl(methylsulfonyl)amino]benzoate top
Crystal data top
C10H12BrNO4SF(000) = 648
Mr = 322.18Dx = 1.672 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3094 reflections
a = 6.0798 (1) Åθ = 2.1–28.3°
b = 10.7853 (3) ŵ = 3.38 mm1
c = 19.5206 (4) ÅT = 296 K
β = 90.306 (1)°Needle, yellow
V = 1280.00 (5) Å30.28 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3170 independent reflections
Radiation source: fine-focus sealed tube2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1114
Tmin = 0.675, Tmax = 0.766l = 2618
13682 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.314P]
where P = (Fo2 + 2Fc2)/3
3170 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C10H12BrNO4SV = 1280.00 (5) Å3
Mr = 322.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0798 (1) ŵ = 3.38 mm1
b = 10.7853 (3) ÅT = 296 K
c = 19.5206 (4) Å0.28 × 0.10 × 0.08 mm
β = 90.306 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2215 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.766Rint = 0.032
13682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3170 reflectionsΔρmin = 0.43 e Å3
157 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.87436 (5)0.17725 (3)0.05236 (1)0.0593 (1)
S10.31436 (11)0.27222 (6)0.25490 (3)0.0430 (2)
O10.0398 (3)0.36804 (16)0.10645 (9)0.0480 (6)
O20.3103 (3)0.49394 (17)0.07246 (10)0.0615 (7)
O30.1288 (3)0.2765 (2)0.29944 (10)0.0705 (8)
O40.3995 (4)0.38536 (16)0.22837 (9)0.0626 (8)
N10.2453 (3)0.18507 (17)0.18980 (10)0.0405 (7)
C10.3871 (4)0.2795 (2)0.08386 (11)0.0351 (7)
C20.3870 (4)0.1830 (2)0.13144 (11)0.0361 (7)
C30.5263 (4)0.0825 (2)0.12135 (13)0.0485 (9)
C40.6658 (4)0.0783 (3)0.06623 (13)0.0514 (9)
C50.6714 (4)0.1765 (2)0.02093 (12)0.0400 (8)
C60.5328 (4)0.2764 (2)0.02934 (12)0.0392 (8)
C70.2441 (4)0.3927 (2)0.08770 (11)0.0397 (8)
C80.1053 (5)0.4740 (3)0.11019 (16)0.0633 (11)
C90.1119 (5)0.0733 (3)0.20332 (15)0.0638 (11)
C100.5280 (6)0.1954 (3)0.29790 (17)0.0701 (12)
H30.525090.017100.152390.0581*
H40.755810.009650.059480.0616*
H60.536830.341910.001590.0470*
H8A0.034510.539220.135470.0948*
H8B0.238790.450630.132840.0948*
H8C0.138920.502470.064730.0948*
H9A0.050010.043440.161090.0955*
H9B0.004460.093710.234420.0955*
H9C0.203330.010210.223250.0955*
H10A0.655970.193350.269310.1052*
H10B0.483240.112140.308290.1052*
H10C0.561980.238470.339660.1052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0607 (2)0.0684 (2)0.0489 (2)0.0212 (1)0.0172 (1)0.0024 (1)
S10.0595 (4)0.0354 (3)0.0342 (3)0.0018 (3)0.0066 (3)0.0019 (3)
O10.0388 (10)0.0460 (10)0.0593 (11)0.0085 (8)0.0031 (8)0.0053 (9)
O20.0691 (14)0.0389 (10)0.0769 (13)0.0149 (9)0.0276 (11)0.0158 (10)
O30.0828 (16)0.0770 (14)0.0520 (12)0.0100 (12)0.0257 (11)0.0111 (11)
O40.1016 (17)0.0352 (10)0.0510 (11)0.0133 (10)0.0043 (11)0.0036 (9)
N10.0501 (13)0.0370 (11)0.0343 (10)0.0033 (9)0.0034 (9)0.0001 (9)
C10.0374 (13)0.0351 (12)0.0327 (11)0.0055 (10)0.0008 (10)0.0006 (10)
C20.0418 (14)0.0350 (13)0.0315 (11)0.0009 (10)0.0003 (10)0.0019 (10)
C30.0645 (18)0.0357 (14)0.0452 (14)0.0104 (12)0.0036 (12)0.0063 (11)
C40.0591 (18)0.0456 (15)0.0495 (15)0.0225 (13)0.0059 (13)0.0023 (12)
C50.0431 (14)0.0423 (14)0.0346 (12)0.0070 (11)0.0020 (10)0.0058 (10)
C60.0441 (14)0.0387 (13)0.0347 (12)0.0059 (12)0.0025 (10)0.0032 (10)
C70.0476 (16)0.0397 (14)0.0318 (11)0.0093 (12)0.0045 (10)0.0024 (10)
C80.0525 (19)0.068 (2)0.0695 (19)0.0233 (15)0.0025 (15)0.0155 (16)
C90.064 (2)0.0674 (19)0.0600 (17)0.0252 (16)0.0120 (14)0.0095 (15)
C100.081 (2)0.063 (2)0.066 (2)0.0056 (17)0.0241 (18)0.0031 (15)
Geometric parameters (Å, º) top
Br1—C51.894 (2)C4—C51.380 (4)
S1—O31.429 (2)C5—C61.378 (3)
S1—O41.424 (2)C3—H30.9300
S1—N11.634 (2)C4—H40.9300
S1—C101.751 (4)C6—H60.9300
O1—C71.324 (3)C8—H8A0.9600
O1—C81.446 (4)C8—H8B0.9600
O2—C71.202 (3)C8—H8C0.9600
N1—C21.432 (3)C9—H9A0.9600
N1—C91.478 (4)C9—H9B0.9600
C1—C21.395 (3)C9—H9C0.9600
C1—C61.389 (3)C10—H10A0.9600
C1—C71.501 (3)C10—H10B0.9600
C2—C31.390 (3)C10—H10C0.9600
C3—C41.374 (4)
Br1···O3i3.3255 (19)C1···H8Bx3.0800
Br1···H4ii3.0200C3···H9C2.9100
Br1···H9Aiii3.2200C3···H9A3.0300
Br1···H10Civ2.9700C4···H9Ax3.0000
S1···O13.4929 (19)C6···H8Bx3.0800
S1···C73.537 (2)C9···H32.7700
O1···S13.4929 (19)C9···H10B3.0700
O1···O43.229 (3)H3···C92.7700
O1···N12.843 (3)H3···H9C2.4000
O2···C6v3.319 (3)H3···O4xii2.7600
O3···Br1vi3.3255 (19)H4···Br1ii3.0200
O4···O13.229 (3)H6···O22.5900
O4···C72.900 (3)H6···O2v2.4300
O4···C10vii3.412 (4)H8A···O22.4800
O4···C13.044 (3)H8A···O3xiii2.9200
O2···H62.5900H8B···C1xi3.0800
O2···H8C2.7400H8B···C6xi3.0800
O2···H8A2.4800H8B···H10Bxiii2.5700
O2···H8Cviii2.8700H8C···O22.7400
O2···H6v2.4300H8C···O2viii2.8700
O3···H8Aix2.9200H9A···C33.0300
O3···H9B2.4800H9A···C4xi3.0000
O4···H3vii2.7600H9A···Br1iii3.2200
O4···H9Cvii2.9200H9B···O32.4800
O4···H10Bvii2.6500H9B···H10Axi2.4300
N1···O12.843 (3)H9C···C32.9100
C1···O43.044 (3)H9C···H32.4000
C6···O2v3.319 (3)H9C···O4xii2.9200
C6···C8x3.441 (4)H10A···H9Bx2.4300
C7···S13.537 (2)H10B···C93.0700
C7···O42.900 (3)H10B···O4xii2.6500
C8···C6xi3.441 (4)H10B···H8Bix2.5700
C10···O4xii3.412 (4)H10C···Br1xiv2.9700
O3—S1—O4118.90 (13)C2—C3—H3119.00
O3—S1—N1106.95 (11)C4—C3—H3119.00
O3—S1—C10108.04 (14)C3—C4—H4120.00
O4—S1—N1107.61 (10)C5—C4—H4120.00
O4—S1—C10108.04 (15)C1—C6—H6120.00
N1—S1—C10106.71 (13)C5—C6—H6120.00
C7—O1—C8115.4 (2)O1—C8—H8A109.00
S1—N1—C2118.33 (15)O1—C8—H8B109.00
S1—N1—C9118.00 (17)O1—C8—H8C109.00
C2—N1—C9117.55 (19)H8A—C8—H8B109.00
C2—C1—C6119.7 (2)H8A—C8—H8C109.00
C2—C1—C7124.8 (2)H8B—C8—H8C109.00
C6—C1—C7115.46 (19)N1—C9—H9A109.00
N1—C2—C1121.4 (2)N1—C9—H9B109.00
N1—C2—C3119.6 (2)N1—C9—H9C109.00
C1—C2—C3119.0 (2)H9A—C9—H9B109.00
C2—C3—C4121.0 (2)H9A—C9—H9C109.00
C3—C4—C5119.6 (3)H9B—C9—H9C109.00
Br1—C5—C4120.37 (18)S1—C10—H10A109.00
Br1—C5—C6119.20 (17)S1—C10—H10B109.00
C4—C5—C6120.4 (2)S1—C10—H10C110.00
C1—C6—C5120.2 (2)H10A—C10—H10B109.00
O1—C7—O2124.5 (2)H10A—C10—H10C109.00
O1—C7—C1113.27 (19)H10B—C10—H10C109.00
O2—C7—C1122.1 (2)
O3—S1—N1—C2169.01 (17)C7—C1—C2—C3179.3 (2)
O3—S1—N1—C939.1 (2)C2—C1—C6—C52.2 (3)
O4—S1—N1—C240.2 (2)C7—C1—C6—C5179.9 (2)
O4—S1—N1—C9167.94 (19)C2—C1—C7—O141.7 (3)
C10—S1—N1—C275.6 (2)C2—C1—C7—O2141.0 (2)
C10—S1—N1—C976.3 (2)C6—C1—C7—O1140.6 (2)
C8—O1—C7—O22.1 (3)C6—C1—C7—O236.8 (3)
C8—O1—C7—C1179.4 (2)N1—C2—C3—C4179.4 (2)
S1—N1—C2—C177.8 (3)C1—C2—C3—C41.2 (4)
S1—N1—C2—C3102.8 (2)C2—C3—C4—C51.4 (4)
C9—N1—C2—C1130.3 (2)C3—C4—C5—Br1176.30 (19)
C9—N1—C2—C349.2 (3)C3—C4—C5—C62.3 (4)
C6—C1—C2—N1177.6 (2)Br1—C5—C6—C1178.13 (18)
C6—C1—C2—C33.0 (3)C4—C5—C6—C10.5 (4)
C7—C1—C2—N10.2 (4)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+2, y, z; (iii) x+1, y, z; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x1, y+1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1, z; (ix) x, y1/2, z+1/2; (x) x+1, y, z; (xi) x1, y, z; (xii) x+1, y1/2, z+1/2; (xiii) x, y+1/2, z+1/2; (xiv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2v0.932.433.319 (3)159
Symmetry code: (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H12BrNO4S
Mr322.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.0798 (1), 10.7853 (3), 19.5206 (4)
β (°) 90.306 (1)
V3)1280.00 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.38
Crystal size (mm)0.28 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.675, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
13682, 3170, 2215
Rint0.032
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.04
No. of reflections3170
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.433.319 (3)159
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120567-PS2–276).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds