organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1017

N-(4-Isopropoxyphen­yl)acetamide

aCollege of Light Industry and Food Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 31 March 2009; accepted 3 April 2009; online 10 April 2009)

In the mol­ecule of the title compound, C11H15NO2, the planar acetamide unit [maximum deviation of 0.0014 (6) Å] is oriented at a dihedral angle of 19.68 (4)° with respect to the aromatic ring. An intra­molecular C—H⋯O inter­action results in the formation of a six-membered ring. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis

Related literature

For general background, see: Knesl et al. (2006[Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286-297.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO2

  • Mr = 193.24

  • Orthorhombic, P b c a

  • a = 9.3010 (19) Å

  • b = 7.6490 (15) Å

  • c = 31.394 (6) Å

  • V = 2233.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.992

  • 2026 measured reflections

  • 2026 independent reflections

  • 1099 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.202

  • S = 1.01

  • 2026 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.01 2.869 (3) 175
C6—H6A⋯O2 0.93 2.34 2.892 (4) 118
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies on tandutinib (Knesl et al., 2006), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is, of course, planar. The B (O2/N/C10/C11) moiety is also planar with a maximum deviation of -0.0014 (6) Å for C10 atom, and it is oriented with respect to ring A at a dihedral angle of 19.68 (4)°. Intramolecular C-H···O interaction (Table 1) results in the formation of a six-membered ring C (O2/N/C6/C7/C10/H6A), having twisted conformation.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains along the a axis, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Knesl et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, N-(4-hydroxyphenyl)acetamide (50 mmol), 2-bromopropane (75 mmol) and potassium hydroxide (100 mmol) were mixed with ethanol (60 ml), and then the mixture was heated to reflux. Reaction progress was monitored by TLC. After ethanol removed in vacuo and filtration, the title compound was obtained (yield; 83.2%, m.p. 403 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
N-(4-isopropoxyphenyl)acetamide top
Crystal data top
C11H15NO2Dx = 1.149 Mg m3
Mr = 193.24Melting point: 403K K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.3010 (19) Åθ = 9–12°
b = 7.6490 (15) ŵ = 0.08 mm1
c = 31.394 (6) ÅT = 294 K
V = 2233.5 (8) Å3Block, colorless
Z = 80.30 × 0.10 × 0.10 mm
F(000) = 832
Data collection top
Enraf–Nonius CAD-4
diffractometer
1099 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.3°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.977, Tmax = 0.992l = 037
2026 measured reflections3 standard reflections every 120 min
2026 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.202 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2026 reflectionsΔρmax = 0.26 e Å3
127 parametersΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H15NO2V = 2233.5 (8) Å3
Mr = 193.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.3010 (19) ŵ = 0.08 mm1
b = 7.6490 (15) ÅT = 294 K
c = 31.394 (6) Å0.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1099 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.977, Tmax = 0.9923 standard reflections every 120 min
2026 measured reflections intensity decay: 1%
2026 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068127 parameters
wR(F2) = 0.202H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
2026 reflectionsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.5437 (3)0.2110 (3)0.52353 (8)0.0516 (7)
H0A0.46090.25640.51830.062*
O10.5722 (3)0.0692 (3)0.68713 (7)0.0834 (8)
O20.7614 (2)0.1579 (3)0.49473 (7)0.0665 (7)
C10.5187 (7)0.3739 (7)0.67643 (15)0.128 (2)
H1A0.51920.36130.64600.192*
H1B0.42310.35460.68700.192*
H1C0.54940.48970.68390.192*
C20.6254 (7)0.2587 (7)0.74329 (13)0.1163 (17)
H2A0.69150.17330.75420.175*
H2B0.65770.37370.75100.175*
H2C0.53180.23850.75520.175*
C30.6181 (5)0.2437 (6)0.69566 (12)0.0810 (12)
H3A0.71460.26070.68380.097*
C40.5728 (4)0.0080 (4)0.64580 (11)0.0602 (9)
C50.6698 (3)0.0586 (4)0.61512 (10)0.0589 (9)
H5A0.73960.14150.62150.071*
C60.6637 (3)0.0134 (4)0.57479 (10)0.0543 (8)
H6A0.72970.02210.55430.065*
C70.5608 (3)0.1378 (4)0.56435 (9)0.0470 (8)
C80.4652 (4)0.1886 (5)0.59609 (12)0.0631 (10)
H8A0.39550.27220.59000.076*
C90.4712 (4)0.1183 (5)0.63610 (11)0.0680 (10)
H9A0.40690.15550.65690.082*
C100.6390 (3)0.2191 (4)0.49183 (10)0.0515 (8)
C110.5892 (4)0.3070 (5)0.45170 (11)0.0638 (10)
H11A0.66520.30470.43100.096*
H11B0.56380.42600.45780.096*
H11C0.50690.24640.44060.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0428 (13)0.0549 (16)0.0572 (16)0.0014 (12)0.0018 (11)0.0035 (13)
O10.119 (2)0.0703 (17)0.0608 (16)0.0233 (16)0.0052 (14)0.0019 (13)
O20.0471 (13)0.0715 (16)0.0808 (16)0.0047 (12)0.0103 (12)0.0115 (12)
C10.198 (6)0.092 (4)0.094 (4)0.034 (4)0.005 (4)0.003 (3)
C20.168 (5)0.107 (4)0.074 (3)0.024 (4)0.001 (3)0.022 (3)
C30.096 (3)0.069 (2)0.078 (3)0.014 (2)0.008 (2)0.011 (2)
C40.076 (2)0.0508 (19)0.054 (2)0.0052 (19)0.0027 (17)0.0050 (16)
C50.061 (2)0.051 (2)0.065 (2)0.0133 (17)0.0040 (16)0.0000 (17)
C60.0534 (18)0.0518 (19)0.058 (2)0.0022 (16)0.0051 (15)0.0014 (16)
C70.0428 (15)0.0439 (17)0.0543 (19)0.0027 (14)0.0004 (13)0.0027 (14)
C80.062 (2)0.057 (2)0.071 (2)0.0136 (17)0.0049 (17)0.0004 (18)
C90.076 (2)0.064 (2)0.063 (2)0.017 (2)0.0114 (17)0.0049 (19)
C100.0486 (17)0.0420 (18)0.064 (2)0.0084 (15)0.0008 (15)0.0044 (15)
C110.061 (2)0.063 (2)0.067 (2)0.0106 (18)0.0042 (16)0.0080 (18)
Geometric parameters (Å, º) top
N—C101.334 (4)C4—C51.375 (4)
N—C71.407 (4)C4—C91.385 (4)
N—H0A0.8600C5—C61.382 (4)
O1—C41.379 (4)C5—H5A0.9300
O1—C31.427 (5)C6—C71.389 (4)
O2—C101.234 (4)C6—H6A0.9300
C1—C31.487 (6)C7—C81.391 (4)
C1—H1A0.9600C8—C91.367 (5)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—H9A0.9300
C2—C31.501 (5)C10—C111.501 (4)
C2—H2A0.9600C11—H11A0.9600
C2—H2B0.9600C11—H11B0.9600
C2—H2C0.9600C11—H11C0.9600
C3—H3A0.9800
C10—N—C7128.5 (3)C4—C5—C6120.2 (3)
C10—N—H0A115.7C4—C5—H5A119.9
C7—N—H0A115.7C6—C5—H5A119.9
C4—O1—C3119.5 (3)C5—C6—C7121.2 (3)
C3—C1—H1A109.5C5—C6—H6A119.4
C3—C1—H1B109.5C7—C6—H6A119.4
H1A—C1—H1B109.5C6—C7—C8117.6 (3)
C3—C1—H1C109.5C6—C7—N124.4 (3)
H1A—C1—H1C109.5C8—C7—N118.0 (3)
H1B—C1—H1C109.5C9—C8—C7121.5 (3)
C3—C2—H2A109.5C9—C8—H8A119.3
C3—C2—H2B109.5C7—C8—H8A119.3
H2A—C2—H2B109.5C8—C9—C4120.3 (3)
C3—C2—H2C109.5C8—C9—H9A119.9
H2A—C2—H2C109.5C4—C9—H9A119.9
H2B—C2—H2C109.5O2—C10—N122.7 (3)
O1—C3—C1111.3 (4)O2—C10—C11121.1 (3)
O1—C3—C2105.8 (3)N—C10—C11116.2 (3)
C1—C3—C2112.4 (4)C10—C11—H11A109.5
O1—C3—H3A109.1C10—C11—H11B109.5
C1—C3—H3A109.1H11A—C11—H11B109.5
C2—C3—H3A109.1C10—C11—H11C109.5
C5—C4—O1124.5 (3)H11A—C11—H11C109.5
C5—C4—C9119.3 (3)H11B—C11—H11C109.5
O1—C4—C9116.1 (3)
C4—O1—C3—C165.9 (5)C10—N—C7—C621.2 (5)
C4—O1—C3—C2171.7 (4)C10—N—C7—C8161.2 (3)
C3—O1—C4—C532.2 (5)C6—C7—C8—C90.4 (5)
C3—O1—C4—C9150.6 (4)N—C7—C8—C9177.4 (3)
O1—C4—C5—C6178.5 (3)C7—C8—C9—C40.8 (5)
C9—C4—C5—C61.3 (5)C5—C4—C9—C81.7 (5)
C4—C5—C6—C70.2 (5)O1—C4—C9—C8179.0 (3)
C5—C6—C7—C80.7 (5)C7—N—C10—O20.6 (5)
C5—C6—C7—N176.9 (3)C7—N—C10—C11179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.012.869 (3)175
C6—H6A···O20.932.342.892 (4)118
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H15NO2
Mr193.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)9.3010 (19), 7.6490 (15), 31.394 (6)
V3)2233.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2026, 2026, 1099
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.202, 1.01
No. of reflections2026
No. of parameters127
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.012.869 (3)175
C6—H6A···O20.932.342.892 (4)118
Symmetry code: (i) x1/2, y+1/2, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKnesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1017
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds