organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1042

2-Hydr­­oxy-3-nitro-N-phenyl­benzamide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Kunsan National University, Kusan, Chonbuk 573-701, Republic of Korea
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 April 2009; accepted 6 April 2009; online 18 April 2009)

The asymmetric unit of the title compound, C13H10N2O4, contains two crystallographically independent mol­ecules. The aromatic rings are oriented at dihedral angles of 24.39 (3) and 7.47 (3)° in the two mol­ecules and intra­molecular N—H⋯O and O—H⋯O hydrogen bonds result in the formation of two planar six-membered rings. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains, forming R22(10) ring motifs. Weak ππ contacts between the benzene and phenyl rings [centroid–centroid distance = 3.955 (3) Å] may further stabilize the structure.

Related literature

For general background to the biological activity of benzoxazepine derivatives, see: Clark et al. (2006[Clark, D., Dedova, I., Cordwell, S. & Matsumoto, I. (2006). J. Mol. Psychiatr. 11, 459-470.]); Mc Gee et al. (2001[Mc Gee, M. M., Campiani, G., Ramunno, A., Fattorusso, C., Nacci, V., Lawler, M., Williams, D. C. & Zisterer, D. M. (2001). J. Pharmacol. Exp. Ther. 296, 31-40.]). For a related structure, see: Yi et al. (2007[Yi, H.-P., Wu, J., Ding, K.-L., Jiang, X.-K. & Li, Z.-T. (2007). J. Org. Chem. 72, 870-877.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21 /n

  • a = 10.485 (2) Å

  • b = 11.465 (2) Å

  • c = 20.013 (4) Å

  • β = 101.181 (5)°

  • V = 2360.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.986

  • 13479 measured reflections

  • 4190 independent reflections

  • 1880 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.097

  • S = 0.88

  • 4190 reflections

  • 339 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.86 1.93 2.653 (3) 140
O2—H2O⋯O3 0.82 1.86 2.569 (3) 144
O2—H2O⋯O7i 0.82 2.31 2.920 (3) 132
N3—H3N⋯O6 0.86 1.95 2.673 (3) 140
O6—H6O⋯O7 0.82 1.81 2.532 (3) 146
C6—H6⋯O1ii 0.93 2.55 3.231 (5) 131
C18—H18⋯O4iii 0.93 2.49 3.167 (4) 130
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Different biological activities have been reported for benzoxazepine derivatives such as anti-cancer (Mc Gee et al., 2001) and anti-HIV agents (Clark et al., 2006). Our work was aiming the formations of various benzoxazepine derivatives. The title compound, (I), is an intermediate for their preparation. It will also be utilized for the complexation with various metals. We report herein the crystal structure of (I).

The crystal structure of N-(2-Methoxyphenyl) 2-hydroxy-5-methyl-3-nitro- benzamide, (II) (Yi et al., 2007) has been published, which is different from (I) due to the substitution of methoxy on N-phenyl and methyl group on the nitro containing aromatic ring.

The asymmetric unit of (I) contains two crystallographically independent molecules. Rings A (C1-C6), B (C8-C13) and A' (C14-C19), B' (C21-C26) are, of course, planar, and they are oriented at dihedral angles of A/B = 24.39 (3) and A'/B' = 7.47 (3) °. Intramolecular N-H···O and O-H···O hydrogen bonds (Table 1) result in the formations of planar six-membered rings C (O2/N1/C1/C2/C7/H7N), D (O2/O3/N2/C2/C3/H2O) and C' (O6/N3/C14/C15/C20/H3N), D' (O6/O7/N4/C15/C16/H6O). They are oriented with respect to the adjacent rings at dihedral angles of A/C = 3.33 (3), A/D = 0.99 (3), C/D = 2.74 (3) ° and A'/C' = 1.93 (3), A'/D' = 2.71 (3), C'/D' = 3.83 (3) °. So, they are nearly coplanar.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules into chains forming R22(10) ring motifs (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The ππ contact between the benzene and phenyl rings, Cg1—Cg4i [symmetry code: (i) x - 1/2, 1/2 - y, z - 1/2, where Cg1 and Cg4 are centroids of the rings A (C1-C6) and B' (C21-C26), respectively] may further stabilize the structure, with centroid-centroid distance of 3.955 (3) Å.

Related literature top

For general background to the biological activity of benzoxazepine derivatives, see: Clark et al. (2006); Mc Gee et al. (2001). For a related structure, see: Yi et al. (2007). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, a solution of N-phenyl 2-hydroxy- benzamide (5.3 g, 0.025 mol) in ethylacetate (EtOAc) (25 ml) was added dropwise to a nitrating mixture of HNO3 (2.25 ml, 3.15 g, 0.05 mol) and H2SO4 (1.33 ml, 2.45 g, 0.025 mol), with constant stirring, while the temperature was kept below 278 K. The reaction mixture was refluxed for 5 h, cooled, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3 × 25 ml). The organic layer was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford reddish brown solid. The column chromatographic purification with 0, 2.5, 5, 7.5 and 10 % EtOAc in petrol (0.5 l each) over a silica gel packed column (25.5 cm) afforded the title compound.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Hydroxy-3-nitro-N-phenylbenzamide top
Crystal data top
C13H10N2O4F(000) = 1072
Mr = 258.23Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2234 reflections
a = 10.485 (2) Åθ = 2.1–27.0°
b = 11.465 (2) ŵ = 0.11 mm1
c = 20.013 (4) ÅT = 296 K
β = 101.181 (5)°Prism, brown
V = 2360.1 (8) Å30.26 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4190 independent reflections
Radiation source: fine-focus sealed tube1880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 7.82 pixels mm-1θmax = 25.1°, θmin = 2.1°
ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.979, Tmax = 0.986l = 2322
13479 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0245P)2]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max < 0.001
339 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10N2O4V = 2360.1 (8) Å3
Mr = 258.23Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.485 (2) ŵ = 0.11 mm1
b = 11.465 (2) ÅT = 296 K
c = 20.013 (4) Å0.26 × 0.20 × 0.18 mm
β = 101.181 (5)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4190 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1880 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.091
13479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.88Δρmax = 0.19 e Å3
4190 reflectionsΔρmin = 0.19 e Å3
339 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1388 (2)0.41856 (19)0.08311 (10)0.0808 (10)
O20.4704 (2)0.34896 (17)0.00581 (9)0.0586 (8)
O30.5836 (3)0.3805 (2)0.09569 (12)0.0815 (11)
O40.4835 (3)0.4655 (2)0.18661 (11)0.1105 (13)
O50.79454 (13)0.47437 (11)0.53123 (6)0.0742 (10)
O60.44496 (13)0.29222 (11)0.47736 (6)0.0630 (9)
O70.2306 (2)0.24638 (18)0.51192 (12)0.0785 (10)
O80.1932 (2)0.29716 (17)0.61025 (11)0.0891 (11)
N10.3303 (3)0.32209 (18)0.10180 (11)0.0516 (10)
N20.4853 (4)0.4287 (3)0.12935 (14)0.0728 (14)
N30.6742 (2)0.35952 (17)0.45098 (10)0.0505 (10)
N40.2654 (3)0.2946 (2)0.56899 (14)0.0634 (11)
C10.2574 (3)0.4220 (2)0.00668 (14)0.0488 (11)
C20.3693 (3)0.4033 (2)0.03317 (14)0.0475 (11)
C30.3707 (4)0.4438 (2)0.09925 (15)0.0543 (13)
C40.2652 (4)0.4996 (3)0.13803 (16)0.0701 (16)
C50.1553 (4)0.5164 (3)0.11226 (16)0.0768 (16)
C60.1533 (4)0.4784 (3)0.04686 (15)0.0665 (14)
C70.2363 (4)0.3878 (3)0.06361 (15)0.0541 (14)
C80.3309 (3)0.2730 (2)0.16716 (13)0.0470 (11)
C90.2525 (3)0.3112 (2)0.21062 (14)0.0650 (14)
C100.2579 (4)0.2549 (3)0.27241 (16)0.0726 (16)
C110.3406 (4)0.1640 (3)0.29130 (15)0.0707 (16)
C120.4202 (3)0.1278 (3)0.24855 (14)0.0670 (14)
C130.41554 (13)0.18195 (11)0.18641 (6)0.0553 (11)
C140.5958 (3)0.4037 (2)0.55541 (13)0.0446 (11)
C150.4774 (3)0.3463 (2)0.53838 (13)0.0480 (13)
C160.3931 (3)0.3471 (2)0.58522 (15)0.0485 (11)
C170.4279 (4)0.4007 (3)0.64807 (14)0.0599 (14)
C180.5448 (3)0.4560 (3)0.66462 (14)0.0617 (13)
C190.6269 (3)0.4582 (2)0.61847 (13)0.0543 (11)
C200.6977 (3)0.4154 (2)0.51198 (14)0.0509 (13)
C210.7531 (3)0.3568 (2)0.40071 (14)0.0450 (11)
C220.8800 (3)0.3951 (2)0.41066 (15)0.0574 (14)
C230.9484 (3)0.3838 (3)0.35836 (16)0.0659 (14)
C240.8919 (4)0.3353 (3)0.29665 (17)0.0684 (14)
C250.7655 (4)0.2979 (2)0.28709 (15)0.0614 (14)
C260.6952 (3)0.3085 (2)0.33859 (14)0.0531 (12)
H1N0.397780.308390.084510.0619*
H2O0.528420.340040.015920.0704*
H40.269020.525710.181600.0839*
H50.083090.552830.138190.0923*
H60.078770.491330.029150.0798*
H90.196540.373950.198590.0781*
H100.204050.279730.301480.0873*
H110.342970.126850.332830.0848*
H120.477750.066500.261440.0804*
H130.469650.156780.157580.0665*
H3N0.602680.320910.441600.0606*
H6O0.369590.269240.471970.0756*
H170.371860.398960.678830.0716*
H180.569020.492140.706790.0737*
H190.705710.497380.629980.0653*
H220.919230.428080.452010.0686*
H231.034030.409500.364970.0792*
H240.938920.328070.261970.0820*
H250.726570.265150.245630.0736*
H260.609340.283300.331620.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (19)0.1119 (19)0.0649 (15)0.0324 (14)0.0181 (15)0.0166 (13)
O20.0552 (16)0.0776 (15)0.0443 (12)0.0043 (12)0.0126 (12)0.0041 (11)
O30.084 (2)0.107 (2)0.0586 (16)0.0113 (16)0.0263 (16)0.0001 (14)
O40.148 (3)0.145 (2)0.0445 (14)0.0237 (18)0.0338 (16)0.0192 (14)
O50.069 (2)0.0960 (18)0.0604 (14)0.0269 (14)0.0194 (14)0.0208 (12)
O60.0651 (17)0.0760 (15)0.0511 (13)0.0161 (12)0.0194 (12)0.0120 (11)
O70.078 (2)0.0900 (18)0.0719 (16)0.0262 (14)0.0252 (15)0.0096 (13)
O80.089 (2)0.1042 (19)0.0886 (17)0.0140 (14)0.0535 (17)0.0023 (14)
N10.057 (2)0.0570 (16)0.0432 (14)0.0072 (14)0.0157 (14)0.0078 (12)
N20.100 (3)0.075 (2)0.0454 (19)0.0332 (19)0.019 (2)0.0099 (16)
N30.0519 (19)0.0548 (16)0.0476 (15)0.0079 (13)0.0164 (14)0.0049 (12)
N40.071 (2)0.0595 (18)0.0653 (19)0.0036 (16)0.027 (2)0.0070 (15)
C10.059 (2)0.0429 (19)0.0423 (18)0.0015 (16)0.0042 (19)0.0017 (14)
C20.058 (2)0.0405 (18)0.0409 (18)0.0071 (16)0.0018 (18)0.0011 (14)
C30.077 (3)0.048 (2)0.0386 (18)0.0155 (18)0.013 (2)0.0043 (15)
C40.106 (4)0.057 (2)0.042 (2)0.007 (2)0.001 (2)0.0049 (16)
C50.095 (4)0.067 (2)0.058 (2)0.011 (2)0.011 (2)0.0044 (18)
C60.080 (3)0.062 (2)0.053 (2)0.008 (2)0.002 (2)0.0008 (17)
C70.060 (3)0.050 (2)0.050 (2)0.0012 (18)0.005 (2)0.0027 (16)
C80.055 (2)0.0468 (18)0.0386 (17)0.0034 (16)0.0074 (17)0.0000 (14)
C90.084 (3)0.062 (2)0.053 (2)0.0128 (18)0.023 (2)0.0026 (17)
C100.082 (3)0.087 (3)0.056 (2)0.000 (2)0.031 (2)0.0017 (19)
C110.086 (3)0.081 (3)0.046 (2)0.013 (2)0.015 (2)0.0073 (18)
C120.073 (3)0.069 (2)0.056 (2)0.0068 (19)0.005 (2)0.0142 (17)
C130.058 (2)0.064 (2)0.0445 (18)0.0009 (18)0.0116 (18)0.0024 (16)
C140.050 (2)0.0461 (18)0.0366 (17)0.0028 (15)0.0055 (17)0.0040 (14)
C150.064 (3)0.0441 (19)0.0368 (17)0.0061 (17)0.0120 (18)0.0041 (14)
C160.051 (2)0.047 (2)0.0494 (19)0.0040 (16)0.0145 (19)0.0091 (15)
C170.079 (3)0.060 (2)0.045 (2)0.011 (2)0.023 (2)0.0081 (16)
C180.074 (3)0.072 (2)0.0388 (18)0.009 (2)0.010 (2)0.0004 (16)
C190.056 (2)0.061 (2)0.0437 (18)0.0045 (16)0.0046 (18)0.0021 (15)
C200.061 (3)0.050 (2)0.0416 (18)0.0078 (17)0.0099 (18)0.0059 (15)
C210.055 (2)0.0384 (17)0.0440 (18)0.0040 (16)0.0159 (18)0.0034 (14)
C220.058 (3)0.062 (2)0.0540 (19)0.0056 (18)0.015 (2)0.0025 (16)
C230.057 (3)0.074 (2)0.073 (2)0.0056 (19)0.028 (2)0.0035 (19)
C240.081 (3)0.071 (2)0.062 (2)0.006 (2)0.036 (2)0.0071 (19)
C250.079 (3)0.062 (2)0.0467 (19)0.0059 (19)0.021 (2)0.0014 (16)
C260.058 (2)0.051 (2)0.053 (2)0.0010 (16)0.0175 (19)0.0003 (15)
Geometric parameters (Å, º) top
O1—C71.215 (5)C12—C131.382 (3)
O2—C21.342 (3)C4—H40.9300
O3—N21.246 (5)C5—H50.9300
O4—N21.218 (4)C6—H60.9300
O2—H2O0.8200C9—H90.9300
O5—C201.219 (3)C10—H100.9300
O6—C151.353 (3)C11—H110.9300
O7—N41.258 (4)C12—H120.9300
O8—N41.224 (4)C13—H130.9300
O6—H6O0.8200C14—C191.389 (4)
N1—C81.423 (3)C14—C201.508 (4)
N1—C71.353 (4)C14—C151.388 (4)
N2—C31.455 (6)C15—C161.408 (4)
N1—H1N0.8600C16—C171.384 (4)
N3—C211.421 (4)C17—C181.363 (5)
N3—C201.358 (3)C18—C191.380 (4)
N4—C161.446 (4)C21—C261.389 (4)
N3—H3N0.8600C21—C221.378 (4)
C1—C21.395 (4)C22—C231.385 (4)
C1—C61.384 (5)C23—C241.379 (5)
C1—C71.517 (4)C24—C251.371 (6)
C2—C31.404 (4)C25—C261.384 (5)
C3—C41.379 (5)C17—H170.9300
C4—C51.364 (6)C18—H180.9300
C5—C61.384 (4)C19—H190.9300
C8—C91.379 (4)C22—H220.9300
C8—C131.376 (3)C23—H230.9300
C9—C101.386 (4)C24—H240.9300
C10—C111.362 (5)C25—H250.9300
C11—C121.370 (5)C26—H260.9300
O1···C92.876 (3)C13···C19iv3.463 (3)
O1···C5i3.332 (5)C14···C15x3.431 (3)
O1···C6i3.231 (5)C14···C14x3.479 (4)
O2···N22.888 (3)C15···C20x3.337 (4)
O2···O32.569 (3)C15···C14x3.431 (3)
O2···N12.653 (3)C16···C20x3.374 (4)
O2···C3ii3.273 (4)C17···C21x3.401 (4)
O2···O7iii2.920 (3)C17···O4xii3.330 (4)
O2···C22iv3.414 (3)C17···N3x3.437 (4)
O2···C2ii3.292 (3)C18···O4xii3.167 (4)
O3···C1ii3.283 (4)C19···C8xi3.427 (4)
O3···O7iii2.800 (3)C19···C13xi3.463 (3)
O3···O22.569 (3)C20···C16x3.374 (4)
O3···C23iv3.396 (4)C20···C15x3.337 (4)
O3···C7ii3.250 (5)C20···N1xi3.407 (3)
O4···C17v3.330 (4)C21···C17x3.401 (4)
O4···C18v3.167 (4)C21···C2xi3.392 (4)
O5···C222.879 (3)C22···O52.879 (3)
O6···O72.532 (3)C22···O2xi3.414 (3)
O6···N42.872 (3)C23···O3xi3.396 (4)
O6···N32.673 (3)C24···N2xi3.428 (5)
O7···O2vi2.920 (3)C26···C3xi3.523 (4)
O7···O3vi2.800 (3)C2···H1N2.5600
O7···C6vii3.329 (4)C5···H12iv2.9900
O7···C5vii3.389 (4)C7···H92.8200
O7···O62.532 (3)C11···H263.1000
O1···H92.3300C12···H262.9300
O1···H6i2.5500C13···H19iv3.0600
O1···H5i2.7800C15···H3N2.5600
O1···H62.3600C20···H222.8200
O1···H11viii2.9100C24···H4ii3.0300
O2···H1N1.9300C25···H4ii2.9000
O3···H2O1.8600H1N···O21.9300
O4···H17v2.8300H1N···H132.3000
O4···H18v2.4900H1N···C22.5600
O4···H42.3700H2O···O31.8600
O5···H23ix2.8100H2O···O7iii2.3100
O5···H222.3000H2O···N22.4500
O5···H192.3600H3N···H262.2600
O6···H3N1.9500H3N···C152.5600
O7···H2Ovi2.3100H3N···O61.9500
O7···H6O1.8100H4···C25ii2.9000
O8···H13vi2.7400H4···O42.3700
O8···H172.4000H4···C24ii3.0300
O8···H25vi2.7600H5···H12iv2.5000
N1···C20iv3.407 (3)H5···O1i2.7800
N1···O22.653 (3)H6···H6i2.2100
N2···O22.888 (3)H6···O1i2.5500
N2···C24iv3.428 (5)H6···O12.3600
N3···C17x3.437 (4)H6O···O71.8100
N3···C1xi3.407 (3)H6O···N42.4200
N3···O62.673 (3)H9···C72.8200
N4···O62.872 (3)H9···O12.3300
N4···C5vii3.367 (4)H11···O1vii2.9100
N2···H2O2.4500H12···C5xi2.9900
N4···H6O2.4200H12···H5xi2.5000
C1···N3iv3.407 (3)H13···H1N2.3000
C1···O3ii3.283 (4)H13···O8iii2.7400
C2···C2ii3.575 (4)H17···O4xii2.8300
C2···C21iv3.392 (4)H17···O82.4000
C2···O2ii3.292 (3)H18···O4xii2.4900
C3···C26iv3.523 (4)H19···O52.3600
C3···O2ii3.273 (4)H19···C13xi3.0600
C5···O7viii3.389 (4)H22···O52.3000
C5···N4viii3.367 (4)H22···C202.8200
C5···O1i3.332 (5)H23···O5ix2.8100
C6···O7viii3.329 (4)H25···O8iii2.7600
C6···O1i3.231 (5)H26···C113.1000
C7···O3ii3.250 (5)H26···C122.9300
C8···C19iv3.427 (4)H26···H3N2.2600
C9···O12.876 (3)
C2—O2—H2O109.00C11—C10—H10119.00
C15—O6—H6O109.00C12—C11—H11120.00
C7—N1—C8127.8 (3)C10—C11—H11120.00
O3—N2—O4121.5 (4)C13—C12—H12120.00
O4—N2—C3119.0 (3)C11—C12—H12120.00
O3—N2—C3119.5 (3)C8—C13—H13120.00
C7—N1—H1N116.00C12—C13—H13120.00
C8—N1—H1N116.00C15—C14—C19118.5 (3)
C20—N3—C21128.1 (2)C15—C14—C20126.9 (2)
O7—N4—O8121.0 (3)C19—C14—C20114.6 (3)
O8—N4—C16120.4 (3)O6—C15—C16121.6 (3)
O7—N4—C16118.7 (3)O6—C15—C14119.7 (2)
C21—N3—H3N116.00C14—C15—C16118.7 (2)
C20—N3—H3N116.00N4—C16—C15121.4 (3)
C2—C1—C7126.7 (3)N4—C16—C17117.3 (3)
C2—C1—C6118.5 (3)C15—C16—C17121.3 (3)
C6—C1—C7114.8 (3)C16—C17—C18119.6 (3)
C1—C2—C3118.1 (3)C17—C18—C19119.6 (3)
O2—C2—C3123.4 (3)C14—C19—C18122.2 (3)
O2—C2—C1118.6 (2)O5—C20—N3122.7 (3)
N2—C3—C4117.3 (3)O5—C20—C14120.5 (2)
C2—C3—C4122.0 (4)N3—C20—C14116.8 (2)
N2—C3—C2120.7 (3)N3—C21—C22124.7 (2)
C3—C4—C5119.8 (3)N3—C21—C26115.4 (3)
C4—C5—C6118.8 (3)C22—C21—C26119.9 (3)
C1—C6—C5122.8 (4)C21—C22—C23119.2 (3)
N1—C7—C1116.5 (3)C22—C23—C24121.3 (3)
O1—C7—N1123.1 (3)C23—C24—C25119.1 (3)
O1—C7—C1120.4 (3)C24—C25—C26120.6 (3)
N1—C8—C13116.4 (2)C21—C26—C25119.9 (3)
N1—C8—C9123.9 (2)C16—C17—H17120.00
C9—C8—C13119.7 (2)C18—C17—H17120.00
C8—C9—C10119.2 (3)C17—C18—H18120.00
C9—C10—C11121.2 (3)C19—C18—H18120.00
C10—C11—C12119.4 (3)C14—C19—H19119.00
C11—C12—C13120.4 (3)C18—C19—H19119.00
C8—C13—C12120.1 (2)C21—C22—H22120.00
C3—C4—H4120.00C23—C22—H22120.00
C5—C4—H4120.00C22—C23—H23119.00
C6—C5—H5121.00C24—C23—H23119.00
C4—C5—H5121.00C23—C24—H24120.00
C5—C6—H6119.00C25—C24—H24120.00
C1—C6—H6119.00C24—C25—H25120.00
C10—C9—H9120.00C26—C25—H25120.00
C8—C9—H9120.00C21—C26—H26120.00
C9—C10—H10119.00C25—C26—H26120.00
C8—N1—C7—O13.6 (5)C13—C8—C9—C101.7 (4)
C8—N1—C7—C1176.0 (2)N1—C8—C13—C12178.7 (2)
C7—N1—C8—C919.2 (4)C9—C8—C13—C121.1 (4)
C7—N1—C8—C13160.6 (3)N1—C8—C9—C10178.0 (3)
O3—N2—C3—C20.8 (4)C8—C9—C10—C111.1 (5)
O3—N2—C3—C4178.8 (3)C9—C10—C11—C120.2 (5)
O4—N2—C3—C2179.6 (3)C10—C11—C12—C130.8 (5)
O4—N2—C3—C40.1 (4)C11—C12—C13—C80.2 (4)
C20—N3—C21—C26169.9 (2)C19—C14—C15—O6179.8 (2)
C21—N3—C20—O51.0 (4)C19—C14—C15—C160.9 (4)
C21—N3—C20—C14179.7 (2)C20—C14—C15—O60.8 (4)
C20—N3—C21—C2211.9 (4)C20—C14—C15—C16178.5 (2)
O8—N4—C16—C15179.4 (2)C15—C14—C19—C180.7 (4)
O8—N4—C16—C170.9 (4)C20—C14—C19—C18179.9 (3)
O7—N4—C16—C17179.2 (3)C15—C14—C20—O5175.5 (2)
O7—N4—C16—C150.8 (4)C15—C14—C20—N33.3 (4)
C7—C1—C2—C3178.7 (3)C19—C14—C20—O53.9 (3)
C6—C1—C7—N1173.5 (3)C19—C14—C20—N3177.4 (2)
C6—C1—C2—C30.6 (4)O6—C15—C16—N42.8 (4)
C2—C1—C6—C50.4 (5)O6—C15—C16—C17178.8 (2)
C7—C1—C6—C5179.7 (3)C14—C15—C16—N4176.5 (2)
C2—C1—C7—O1173.1 (3)C14—C15—C16—C171.9 (4)
C2—C1—C7—N17.3 (4)N4—C16—C17—C18177.1 (3)
C6—C1—C7—O16.2 (4)C15—C16—C17—C181.4 (5)
C6—C1—C2—O2179.8 (3)C16—C17—C18—C190.2 (5)
C7—C1—C2—O20.5 (4)C17—C18—C19—C141.2 (5)
O2—C2—C3—N20.2 (4)N3—C21—C22—C23177.6 (3)
O2—C2—C3—C4179.9 (3)C26—C21—C22—C230.5 (4)
C1—C2—C3—N2179.0 (3)N3—C21—C26—C25177.6 (2)
C1—C2—C3—C40.7 (4)C22—C21—C26—C250.6 (4)
N2—C3—C4—C5179.8 (3)C21—C22—C23—C240.1 (5)
C2—C3—C4—C50.2 (5)C22—C23—C24—C250.1 (5)
C3—C4—C5—C61.1 (5)C23—C24—C25—C260.0 (5)
C4—C5—C6—C11.2 (5)C24—C25—C26—C210.4 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y, z1; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+2, y+1, z+1; (x) x+1, y+1, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.861.932.653 (3)140
O2—H2O···O30.821.862.569 (3)144
O2—H2O···O7iii0.822.312.920 (3)132
N3—H3N···O60.861.952.673 (3)140
O6—H6O···O70.821.812.532 (3)146
C6—H6···O1i0.932.553.231 (5)131
C18—H18···O4xii0.932.493.167 (4)130
Symmetry codes: (i) x, y+1, z; (iii) x+1/2, y+1/2, z1/2; (xii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.485 (2), 11.465 (2), 20.013 (4)
β (°) 101.181 (5)
V3)2360.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13479, 4190, 1880
Rint0.091
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.097, 0.88
No. of reflections4190
No. of parameters339
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.861.932.653 (3)140
O2—H2O···O30.821.862.569 (3)144
O2—H2O···O7i0.822.312.920 (3)132
N3—H3N···O60.861.952.673 (3)140
O6—H6O···O70.821.812.532 (3)146
C6—H6···O1ii0.932.553.231 (5)131
C18—H18···O4iii0.932.493.167 (4)130
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

ARR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for funding of the project.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, D., Dedova, I., Cordwell, S. & Matsumoto, I. (2006). J. Mol. Psychiatr. 11, 459–470.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMc Gee, M. M., Campiani, G., Ramunno, A., Fattorusso, C., Nacci, V., Lawler, M., Williams, D. C. & Zisterer, D. M. (2001). J. Pharmacol. Exp. Ther. 296, 31–40.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, H.-P., Wu, J., Ding, K.-L., Jiang, X.-K. & Li, Z.-T. (2007). J. Org. Chem. 72, 870–877.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1042
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds