organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1036

Phenyl N-(4-fluorophen­yl)carbamate

aDepartment of Pharmaceutical Engineering, China Pharmaceutical University, Tongjiaxiang No. 24 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yzcpu@163.com

(Received 7 April 2009; accepted 8 April 2009; online 18 April 2009)

The asymmetric unit of the title compound, C13H10FNO2, contains two crystallographically independent mol­ecules. The aromatic rings are oriented at dihedral angles of 61.77 (3) and 53.94 (3)° in the two mol­ecules. An N—H⋯O hydrogen bond links the mol­ecules. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains. Weak C—H⋯π inter­actions are also present.

Related literature

For a related structure, see: Hynes et al. (2008[Hynes, J. J., Dyckman, A. J., Lin, S. W. & Stephen, T. (2008). J. Med. Chem. 51, 4-16.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10FNO2

  • Mr = 231.22

  • Triclinic, [P \overline 1]

  • a = 5.8860 (12) Å

  • b = 7.8540 (16) Å

  • c = 24.761 (5) Å

  • α = 96.62 (3)°

  • β = 92.82 (3)°

  • γ = 91.19 (3)°

  • V = 1135.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.990, Tmax = 0.992

  • 4548 measured reflections

  • 4110 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.157

  • S = 1.00

  • 4110 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.32 3.044 (4) 142
N2—H2C⋯O2 0.86 2.08 2.931 (4) 171
C19—H19ACg2ii 0.93 2.94 3.644 (4) 134
C23—H23ACg1iii 0.93 2.97 3.710 (5) 138
Symmetry codes: (i) x-1, y-1, z; (ii) x, y+1, z; (iii) x+1, y+1, z. Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Some derivatives of aniline are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C13) and A' (C14-C19), B' (C21-C26) are, of course, planar, and they are oriented at dihedral angles of A/B = 61.77 (3) and A'/B' = 53.94 (3) °. Intramolecular N-H···O hydrogen bond (Table 1) links the molecules.

In the crystal structure, intra- and intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist weak C—H···π interactions (Table 1).

Related literature top

For a related structure, see: Hynes et al. (2008). For bond-length data, see: Allen et al. (1987). Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

Experimental top

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of 4-fluorbenzenamine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. It was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g) (Hynes et al., 2008). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Phenyl N-(4-fluorophenyl)carbamate top
Crystal data top
C13H10FNO2Z = 4
Mr = 231.22F(000) = 480
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8860 (12) ÅCell parameters from 25 reflections
b = 7.8540 (16) Åθ = 8–12°
c = 24.761 (5) ŵ = 0.10 mm1
α = 96.62 (3)°T = 294 K
β = 92.82 (3)°Block, colorless
γ = 91.19 (3)°0.10 × 0.10 × 0.08 mm
V = 1135.3 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1662 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.990, Tmax = 0.992l = 2929
4548 measured reflections3 standard reflections every 120 min
4110 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
4110 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C13H10FNO2γ = 91.19 (3)°
Mr = 231.22V = 1135.3 (4) Å3
Triclinic, P1Z = 4
a = 5.8860 (12) ÅMo Kα radiation
b = 7.8540 (16) ŵ = 0.10 mm1
c = 24.761 (5) ÅT = 294 K
α = 96.62 (3)°0.10 × 0.10 × 0.08 mm
β = 92.82 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1662 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.990, Tmax = 0.9923 standard reflections every 120 min
4548 measured reflections intensity decay: 1%
4110 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00Δρmax = 0.13 e Å3
4110 reflectionsΔρmin = 0.13 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0390 (6)0.6473 (4)0.26993 (14)0.0831 (11)
H1A0.06910.72130.25990.100*
N20.6939 (5)0.2644 (4)0.22504 (13)0.0755 (11)
H2C0.60830.35070.23000.091*
F10.0366 (5)0.3165 (3)0.47653 (11)0.1065 (9)
F21.1428 (5)0.3284 (4)0.03482 (12)0.1253 (11)
O10.1510 (5)0.7508 (4)0.19019 (13)0.1045 (12)
O20.3575 (5)0.5355 (4)0.23766 (11)0.0916 (10)
O30.5300 (5)0.1536 (4)0.29759 (12)0.0938 (11)
O40.8164 (4)0.0021 (3)0.26628 (10)0.0724 (8)
C10.3835 (12)0.7830 (7)0.0572 (2)0.1033 (18)
H1B0.34160.76370.02180.124*
C20.2332 (9)0.7392 (6)0.0984 (3)0.0934 (16)
H2A0.09410.68960.09170.112*
C30.3045 (9)0.7740 (6)0.1487 (2)0.0763 (14)
C40.5077 (11)0.8420 (6)0.1599 (2)0.0894 (16)
H4A0.55160.86050.19530.107*
C50.6465 (9)0.8828 (6)0.1186 (3)0.1024 (18)
H5A0.78490.93270.12590.123*
C60.5889 (11)0.8528 (7)0.0673 (3)0.108 (2)
H6A0.68710.87920.03940.130*
C70.1980 (8)0.6340 (6)0.23447 (19)0.0860 (15)
C80.0241 (7)0.5556 (5)0.32213 (17)0.0698 (12)
C90.1636 (7)0.5849 (5)0.35086 (18)0.0740 (12)
H9A0.27820.66030.33490.089*
C100.1859 (8)0.5051 (6)0.4028 (2)0.0861 (14)
H10A0.31340.52530.42210.103*
C110.0157 (8)0.3963 (5)0.42483 (19)0.0776 (13)
C120.1691 (8)0.3626 (5)0.39833 (18)0.0772 (13)
H12A0.28180.28680.41500.093*
C130.1923 (7)0.4407 (5)0.34595 (18)0.0784 (13)
H13A0.31920.41650.32690.094*
C140.4753 (10)0.1478 (6)0.4438 (2)0.0860 (15)
H14A0.45940.21140.47740.103*
C150.6668 (9)0.0580 (6)0.4346 (2)0.0882 (15)
H15A0.78150.06180.46200.106*
C160.6942 (7)0.0391 (5)0.3851 (2)0.0744 (13)
H16A0.82650.09940.37900.089*
C170.5254 (8)0.0445 (5)0.34616 (18)0.0647 (11)
C180.3329 (8)0.0490 (6)0.35436 (18)0.0775 (13)
H18A0.22030.04780.32660.093*
C190.3070 (9)0.1455 (6)0.4044 (2)0.0829 (14)
H19A0.17610.20750.41070.099*
C200.6969 (7)0.1294 (6)0.26345 (17)0.0763 (13)
C210.8171 (7)0.2801 (5)0.17706 (16)0.0588 (10)
C221.0269 (7)0.2011 (5)0.17460 (18)0.0738 (12)
H22A1.09540.13780.20540.089*
C231.1343 (7)0.2167 (5)0.12616 (19)0.0798 (13)
H23A1.27380.16120.12370.096*
C241.0365 (9)0.3124 (6)0.08250 (19)0.0840 (14)
C250.8320 (8)0.3995 (5)0.08437 (18)0.0813 (13)
H25A0.76930.46810.05400.098*
C260.7227 (7)0.3818 (5)0.13273 (17)0.0717 (12)
H26A0.58450.43930.13520.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.078 (3)0.080 (3)0.086 (3)0.031 (2)0.023 (2)0.013 (2)
N20.082 (3)0.062 (2)0.080 (3)0.038 (2)0.023 (2)0.0024 (19)
F10.120 (2)0.102 (2)0.094 (2)0.0065 (17)0.0279 (17)0.0139 (16)
F20.140 (3)0.121 (2)0.112 (2)0.0283 (19)0.061 (2)0.0174 (18)
O10.105 (3)0.109 (3)0.091 (2)0.056 (2)0.030 (2)0.027 (2)
O20.094 (2)0.085 (2)0.091 (2)0.0490 (18)0.0269 (18)0.0119 (17)
O30.099 (2)0.086 (2)0.089 (2)0.0449 (18)0.0397 (19)0.0265 (18)
O40.0745 (19)0.0645 (18)0.0752 (19)0.0264 (15)0.0099 (15)0.0018 (14)
C10.112 (5)0.125 (5)0.071 (4)0.036 (4)0.012 (4)0.014 (3)
C20.081 (4)0.089 (4)0.112 (5)0.014 (3)0.010 (4)0.030 (3)
C30.065 (3)0.070 (3)0.090 (4)0.027 (3)0.014 (3)0.005 (3)
C40.099 (4)0.083 (4)0.083 (4)0.035 (3)0.008 (3)0.008 (3)
C50.080 (4)0.063 (3)0.163 (6)0.007 (3)0.009 (5)0.013 (4)
C60.081 (4)0.102 (5)0.134 (6)0.029 (4)0.032 (4)0.025 (4)
C70.081 (4)0.093 (4)0.077 (3)0.033 (3)0.015 (3)0.015 (3)
C80.069 (3)0.062 (3)0.079 (3)0.017 (2)0.015 (2)0.008 (2)
C90.066 (3)0.067 (3)0.087 (3)0.016 (2)0.010 (2)0.002 (2)
C100.083 (3)0.078 (3)0.097 (4)0.013 (3)0.025 (3)0.006 (3)
C110.081 (4)0.061 (3)0.089 (4)0.005 (3)0.024 (3)0.007 (3)
C120.081 (3)0.074 (3)0.076 (3)0.015 (3)0.000 (3)0.009 (3)
C130.075 (3)0.077 (3)0.082 (3)0.030 (2)0.009 (2)0.006 (3)
C140.093 (4)0.086 (4)0.078 (4)0.010 (3)0.020 (3)0.002 (3)
C150.090 (4)0.098 (4)0.077 (4)0.012 (3)0.002 (3)0.018 (3)
C160.055 (3)0.064 (3)0.108 (4)0.001 (2)0.015 (3)0.020 (3)
C170.065 (3)0.057 (3)0.072 (3)0.014 (2)0.012 (3)0.005 (2)
C180.077 (4)0.078 (3)0.079 (3)0.020 (3)0.004 (3)0.021 (3)
C190.080 (4)0.069 (3)0.102 (4)0.013 (3)0.022 (3)0.008 (3)
C200.081 (3)0.070 (3)0.076 (3)0.028 (3)0.017 (3)0.003 (3)
C210.059 (3)0.048 (2)0.068 (3)0.007 (2)0.003 (2)0.002 (2)
C220.054 (3)0.073 (3)0.090 (3)0.018 (2)0.002 (2)0.005 (2)
C230.068 (3)0.070 (3)0.099 (4)0.010 (2)0.029 (3)0.007 (3)
C240.099 (4)0.070 (3)0.082 (4)0.006 (3)0.032 (3)0.006 (3)
C250.093 (4)0.073 (3)0.074 (3)0.006 (3)0.009 (3)0.008 (2)
C260.072 (3)0.065 (3)0.074 (3)0.018 (2)0.007 (2)0.007 (2)
Geometric parameters (Å, º) top
N1—C71.325 (5)C9—H9A0.9300
N1—C81.413 (4)C10—C111.354 (5)
N1—H1A0.8600C10—H10A0.9300
N2—C201.340 (4)C11—C121.335 (5)
N2—C211.417 (4)C12—C131.384 (5)
N2—H2C0.8600C12—H12A0.9300
F1—C111.371 (4)C13—H13A0.9300
F2—C241.358 (4)C14—C191.354 (6)
O1—C31.399 (5)C14—C151.357 (6)
O1—C71.359 (4)C14—H14A0.9300
O2—C71.198 (4)C15—C161.385 (6)
O3—C171.396 (5)C15—H15A0.9300
O3—C201.351 (4)C16—C171.347 (5)
O4—C201.204 (4)C16—H16A0.9300
C1—C61.361 (7)C17—C181.374 (5)
C1—C21.400 (6)C18—C191.393 (6)
C1—H1B0.9300C18—H18A0.9300
C2—C31.355 (6)C19—H19A0.9300
C2—H2A0.9300C21—C261.368 (5)
C3—C41.349 (6)C21—C221.377 (5)
C4—C51.353 (6)C22—C231.377 (5)
C4—H4A0.9300C22—H22A0.9300
C5—C61.348 (7)C23—C241.341 (5)
C5—H5A0.9300C23—H23A0.9300
C6—H6A0.9300C24—C251.377 (6)
C8—C91.373 (5)C25—C261.381 (5)
C8—C131.388 (5)C25—H25A0.9300
C9—C101.379 (5)C26—H26A0.9300
C7—N1—C8128.3 (4)C13—C12—H12A120.1
C7—N1—H1A115.8C12—C13—C8119.2 (4)
C8—N1—H1A115.8C12—C13—H13A120.4
C20—N2—C21126.8 (3)C8—C13—H13A120.4
C20—N2—H2C116.6C19—C14—C15120.5 (5)
C21—N2—H2C116.6C19—C14—H14A119.7
C7—O1—C3120.4 (3)C15—C14—H14A119.7
C20—O3—C17118.5 (3)C14—C15—C16121.0 (5)
C6—C1—C2122.3 (5)C14—C15—H15A119.5
C6—C1—H1B118.9C16—C15—H15A119.5
C2—C1—H1B118.9C17—C16—C15118.7 (4)
C3—C2—C1115.4 (5)C17—C16—H16A120.6
C3—C2—H2A122.3C15—C16—H16A120.6
C1—C2—H2A122.3C16—C17—C18120.9 (4)
C4—C3—C2123.5 (5)C16—C17—O3121.9 (5)
C4—C3—O1118.5 (6)C18—C17—O3117.0 (4)
C2—C3—O1117.8 (6)C17—C18—C19119.7 (4)
C3—C4—C5118.9 (5)C17—C18—H18A120.1
C3—C4—H4A120.6C19—C18—H18A120.1
C5—C4—H4A120.6C14—C19—C18119.0 (5)
C6—C5—C4121.5 (6)C14—C19—H19A120.5
C6—C5—H5A119.2C18—C19—H19A120.5
C4—C5—H5A119.2O4—C20—N2127.1 (4)
C5—C6—C1118.4 (6)O4—C20—O3124.4 (4)
C5—C6—H6A120.8N2—C20—O3108.3 (3)
C1—C6—H6A120.8C26—C21—C22120.3 (4)
O2—C7—N1128.5 (4)C26—C21—N2117.4 (3)
O2—C7—O1122.5 (4)C22—C21—N2122.3 (4)
N1—C7—O1109.0 (4)C21—C22—C23119.4 (4)
C9—C8—C13118.8 (4)C21—C22—H22A120.3
C9—C8—N1118.1 (4)C23—C22—H22A120.3
C13—C8—N1123.0 (4)C24—C23—C22119.6 (4)
C8—C9—C10121.4 (4)C24—C23—H23A120.2
C8—C9—H9A119.3C22—C23—H23A120.2
C10—C9—H9A119.3C23—C24—F2119.6 (4)
C11—C10—C9117.7 (4)C23—C24—C25122.3 (4)
C11—C10—H10A121.2F2—C24—C25118.1 (4)
C9—C10—H10A121.2C24—C25—C26118.1 (4)
C12—C11—C10123.0 (4)C24—C25—H25A121.0
C12—C11—F1118.9 (4)C26—C25—H25A121.0
C10—C11—F1118.1 (4)C21—C26—C25120.2 (4)
C11—C12—C13119.8 (4)C21—C26—H26A119.9
C11—C12—H12A120.1C25—C26—H26A119.9
C6—C1—C2—C31.2 (7)C19—C14—C15—C160.6 (7)
C1—C2—C3—C41.7 (7)C14—C15—C16—C170.7 (6)
C1—C2—C3—O1173.0 (4)C15—C16—C17—C182.3 (6)
C7—O1—C3—C467.3 (6)C15—C16—C17—O3173.0 (3)
C7—O1—C3—C2117.7 (5)C20—O3—C17—C1663.8 (6)
C2—C3—C4—C52.0 (7)C20—O3—C17—C18120.8 (4)
O1—C3—C4—C5172.7 (4)C16—C17—C18—C192.6 (6)
C3—C4—C5—C61.8 (7)O3—C17—C18—C19172.9 (4)
C4—C5—C6—C11.3 (8)C15—C14—C19—C180.3 (7)
C2—C1—C6—C51.1 (8)C17—C18—C19—C141.3 (6)
C8—N1—C7—O24.2 (9)C21—N2—C20—O45.8 (8)
C8—N1—C7—O1177.7 (4)C21—N2—C20—O3170.2 (4)
C3—O1—C7—O27.6 (8)C17—O3—C20—O415.0 (7)
C3—O1—C7—N1174.2 (4)C17—O3—C20—N2168.9 (4)
C7—N1—C8—C9176.8 (5)C20—N2—C21—C26150.6 (4)
C7—N1—C8—C134.7 (7)C20—N2—C21—C2231.2 (6)
C13—C8—C9—C101.1 (7)C26—C21—C22—C234.0 (6)
N1—C8—C9—C10177.5 (4)N2—C21—C22—C23177.8 (4)
C8—C9—C10—C110.1 (7)C21—C22—C23—C241.9 (7)
C9—C10—C11—C120.6 (7)C22—C23—C24—F2179.7 (4)
C9—C10—C11—F1180.0 (4)C22—C23—C24—C251.2 (8)
C10—C11—C12—C130.0 (8)C23—C24—C25—C262.1 (7)
F1—C11—C12—C13179.4 (4)F2—C24—C25—C26179.4 (4)
C11—C12—C13—C81.1 (7)C22—C21—C26—C253.1 (6)
C9—C8—C13—C121.6 (7)N2—C21—C26—C25178.6 (4)
N1—C8—C13—C12176.9 (4)C24—C25—C26—C210.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.323.044 (4)142
N2—H2C···O20.862.082.931 (4)171
C19—H19A···Cg2ii0.932.943.644 (4)134
C23—H23A···Cg1iii0.932.973.710 (5)138
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H10FNO2
Mr231.22
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)5.8860 (12), 7.8540 (16), 24.761 (5)
α, β, γ (°)96.62 (3), 92.82 (3), 91.19 (3)
V3)1135.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.990, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4548, 4110, 1662
Rint0.060
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.157, 1.00
No. of reflections4110
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.323.044 (4)142.00
N2—H2C···O20.862.082.931 (4)171.00
C19—H19A···Cg2ii0.932.943.644 (4)133.71
C23—H23A···Cg1iii0.932.973.710 (5)137.68
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHynes, J. J., Dyckman, A. J., Lin, S. W. & Stephen, T. (2008). J. Med. Chem. 51, 4–16.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1036
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds