organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1076

7,14-Bis(4-meth­oxy­phen­yl)-11,11-di­methyl-1,4,10,12-tetra­oxa­di­spiro­[4.2.5.2]penta­decane-9,13-dione

aDepartment of Public Health, Xuzhou Medical College, Xuzhou 221000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: yanshu126@126.com

(Received 10 April 2009; accepted 11 April 2009; online 18 April 2009)

In the title compound, C27H30O8, the cyclo­hexane ring is in a chair conformation, while the five-membered ring adopts an envelope conformation. The 1,3-dioxane ring is oriented with respect to the benzene rings at dihedral angles of 53.38 (3) and 55.31 (3)°, while the dihedral angle between the benzene rings is 71.56 (3)°. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains.

Related literature

For general background on Meldrum's acid, see: Davidson & Bernhard (1948[Davidson, D. & Bernhard, S. A. (1948). J. Am. Chem. Soc. 70, 3426-3428.]); Meldrum (1908[Meldrum, A. N. (1908). J. Chem. Soc. 93, 598-601.]); Muller et al. (2005[Muller, F. L., Constantieux, T. & Rodriguez, J. (2005). J. Am. Chem. Soc. 127, 17176-17177.]); Ramachary et al. (2003[Ramachary, D. B., Chowdari, N. S. & Barbas, C. F. III (2003). Angew. Chem. Int. Ed. 42, 4233-4237.]); Tietze & Beifuss (1993[Tietze, L. F. & Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32, 131-163.]); Tietze et al. (2001[Tietze, L. F., Evers, T. H. & Topken, E. (2001). Angew. Chem. Int. Ed. 40, 903-905.]). For related structures, see: Chande & Khanwelkar (2005[Chande, M. S. & Khanwelkar, R. R. (2005). Tetrahedron Lett. 46, 7787-7792.]); Ramachary & Barbas (2004[Ramachary, D. B. & Barbas, C. F. III (2004). Chem. Eur. J. 10, 5323-5331.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30O8

  • Mr = 482.51

  • Monoclinic, P 21 /n

  • a = 9.977 (5) Å

  • b = 20.162 (9) Å

  • c = 12.508 (6) Å

  • β = 94.934 (8)°

  • V = 2507 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.43 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.989

  • 11754 measured reflections

  • 4126 independent reflections

  • 1349 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.187

  • S = 1.01

  • 4126 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O4i 0.93 2.53 3.449 (3) 168
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the past few decades, Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) (Tietze & Beifuss, 1993; Tietze et al., 2001) has been used as a versatile organic reagent (Ramachary et al., 2003; Muller et al., 2005) and its derivatives are very useful building blocks in synthetic organic chemistry (Davidson & Bernhard, 1948; Meldrum, 1908). Spirocyclic compounds including a Meldrum's acid unit are attractive intermediates in the syntheses of natural products and in medicinal chemistry. Thus, the synthesis of new highly substituted spiro ring system with a Meldrum's acid unit has attracted widespread attention (Ramachary & Barbas, 2004; Chande & Khanwelkar, 2005). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is not planar, having total puckering amplitude, QT, of 0.500 (2) Å and chair conformation [ϕ = 7.64 (3) and θ = 175.56 (3) °] (Cremer & Pople, 1975). Rings B (O1/O2/C1/C7-C9), D (C12-C17) and E (C19-C24) are, of course, planar, and they are oriented at dihedral angles of B/D = 53.38 (3), B/E = 55.31 (3) and D/E = 71.56 (3) °. Ring C (O5/O6/C4/C26/C27) adopts envelope conformation, with atom O5 displaced by 0.153 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background on Meldrum's acid, see: Davidson & Bernhard (1948); Meldrum (1908); Muller et al. (2005); Ramachary et al. (2003); Tietze & Beifuss (1993); Tietze et al. (2001). For related structures, see: Chande & Khanwelkar (2005); Ramachary & Barbas (2004). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by the reaction of of 1,2-diarylidenehydrazine (2 mmol), Meldrum's acid (5 mmol), HOAc (4 ml) and and ethane-1,2-diol (8 ml).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
7,14-Bis(4-methoxyphenyl)-11,11-dimethyl-1,4,10,12- tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione top
Crystal data top
C27H30O8F(000) = 1024
Mr = 482.51Dx = 1.279 Mg m3
Monoclinic, P21/nMelting point: 479 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.977 (5) ÅCell parameters from 1366 reflections
b = 20.162 (9) Åθ = 2.3–19.5°
c = 12.508 (6) ŵ = 0.09 mm1
β = 94.934 (8)°T = 298 K
V = 2507 (2) Å3Prism, colorless
Z = 40.43 × 0.25 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4126 independent reflections
Radiation source: fine-focus sealed tube1349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.961, Tmax = 0.989k = 2024
11754 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4126 reflectionsΔρmax = 0.46 e Å3
316 parametersΔρmin = 0.21 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H30O8V = 2507 (2) Å3
Mr = 482.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.977 (5) ŵ = 0.09 mm1
b = 20.162 (9) ÅT = 298 K
c = 12.508 (6) Å0.43 × 0.25 × 0.12 mm
β = 94.934 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4126 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1349 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.989Rint = 0.104
11754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.075316 parameters
wR(F2) = 0.187H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
4126 reflectionsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0782 (3)0.1365 (2)0.3511 (3)0.0761 (13)
O20.0250 (4)0.1844 (2)0.2024 (3)0.0751 (12)
O30.0355 (4)0.10348 (19)0.4940 (3)0.0686 (12)
O40.2363 (4)0.19884 (18)0.2038 (3)0.0649 (11)
O50.4608 (4)0.1128 (2)0.5381 (4)0.1049 (16)
O60.5876 (5)0.1554 (2)0.4129 (4)0.1001 (16)
O70.0022 (5)0.1063 (2)0.0771 (3)0.0887 (14)
O80.1002 (4)0.4239 (2)0.4598 (4)0.0898 (14)
C10.1680 (5)0.1482 (2)0.3627 (4)0.0466 (14)
C20.2380 (5)0.1994 (3)0.4430 (5)0.0615 (16)
H20.23500.17880.51370.074*
C30.3789 (6)0.2090 (3)0.4312 (5)0.082 (2)
H3A0.41530.23740.48920.099*
H3B0.38720.23270.36460.099*
C40.4711 (8)0.1438 (3)0.4308 (5)0.0680 (18)
C50.3969 (6)0.0959 (3)0.3462 (6)0.084 (2)
H5A0.40500.11410.27530.101*
H5B0.44380.05370.34980.101*
C60.2578 (5)0.0834 (3)0.3569 (5)0.0588 (16)
H60.25690.06370.42840.071*
C70.0383 (5)0.1274 (3)0.4064 (5)0.0528 (15)
C80.1480 (6)0.1791 (2)0.2534 (5)0.0475 (14)
C90.0965 (5)0.1675 (3)0.2462 (4)0.0507 (14)
C100.1679 (6)0.1184 (3)0.1731 (5)0.091 (2)
H10A0.25200.10680.20020.137*
H10B0.11340.07940.16920.137*
H10C0.18450.13740.10290.137*
C110.1733 (6)0.2284 (3)0.2604 (5)0.090 (2)
H11A0.25630.21760.28980.135*
H11B0.19220.24980.19220.135*
H11C0.12170.25770.30840.135*
C120.1543 (5)0.2613 (3)0.4480 (5)0.0537 (15)
C130.1714 (5)0.3153 (3)0.3840 (5)0.0556 (15)
H130.24040.31480.33850.067*
C140.0903 (6)0.3702 (3)0.3850 (5)0.0606 (16)
H140.10280.40540.33890.073*
C150.0101 (6)0.3731 (3)0.4544 (5)0.0615 (16)
C160.0247 (6)0.3210 (3)0.5229 (5)0.0660 (17)
H160.09050.32270.57120.079*
C170.0572 (5)0.2659 (3)0.5209 (4)0.0560 (15)
H170.04720.23140.56890.067*
C180.1000 (8)0.4737 (4)0.3811 (7)0.134 (3)
H18A0.16670.50640.39360.201*
H18B0.12020.45440.31140.201*
H18C0.01290.49420.38440.201*
C190.1895 (5)0.0320 (3)0.2828 (5)0.0516 (15)
C200.2011 (5)0.0315 (3)0.1736 (5)0.0571 (15)
H200.25290.06400.14410.069*
C210.1380 (6)0.0158 (3)0.1067 (5)0.0685 (17)
H210.15040.01590.03390.082*
C220.0572 (6)0.0626 (3)0.1485 (6)0.0643 (17)
C230.0439 (5)0.0631 (3)0.2572 (6)0.0610 (16)
H230.00860.09550.28610.073*
C240.1071 (5)0.0163 (3)0.3232 (5)0.0595 (15)
H240.09490.01670.39600.071*
C250.0945 (7)0.1527 (3)0.1126 (6)0.108 (3)
H25A0.12800.18010.05350.162*
H25B0.16800.12960.14050.162*
H25C0.05020.17990.16780.162*
C260.6675 (6)0.1443 (4)0.5066 (6)0.102 (3)
H26A0.71190.18540.52900.123*
H26B0.73670.11240.49260.123*
C270.5964 (7)0.1206 (4)0.5904 (6)0.115 (3)
H27A0.59810.15230.64890.138*
H27B0.63240.07860.61760.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.037 (2)0.115 (4)0.076 (3)0.008 (2)0.002 (2)0.022 (3)
O20.049 (2)0.113 (4)0.062 (3)0.004 (2)0.003 (2)0.026 (2)
O30.076 (3)0.070 (3)0.059 (3)0.008 (2)0.000 (2)0.015 (2)
O40.065 (2)0.064 (3)0.069 (3)0.004 (2)0.023 (2)0.009 (2)
O50.074 (3)0.096 (4)0.152 (4)0.018 (3)0.050 (3)0.033 (3)
O60.082 (3)0.115 (4)0.101 (4)0.007 (3)0.004 (3)0.004 (3)
O70.100 (3)0.075 (3)0.088 (3)0.023 (3)0.005 (3)0.022 (3)
O80.082 (3)0.064 (3)0.127 (4)0.031 (3)0.030 (3)0.002 (3)
C10.043 (3)0.043 (3)0.054 (4)0.007 (3)0.001 (3)0.001 (3)
C20.064 (4)0.044 (4)0.073 (4)0.002 (3)0.014 (3)0.017 (3)
C30.067 (4)0.091 (5)0.089 (5)0.005 (4)0.010 (4)0.004 (4)
C40.080 (5)0.072 (5)0.054 (4)0.006 (4)0.016 (4)0.009 (4)
C50.068 (4)0.082 (5)0.106 (6)0.008 (4)0.024 (4)0.004 (4)
C60.058 (4)0.038 (4)0.078 (4)0.012 (3)0.008 (3)0.012 (3)
C70.048 (4)0.041 (4)0.070 (4)0.009 (3)0.009 (3)0.006 (3)
C80.048 (3)0.040 (3)0.057 (4)0.003 (3)0.013 (3)0.010 (3)
C90.047 (3)0.056 (4)0.047 (4)0.002 (3)0.008 (3)0.006 (3)
C100.069 (4)0.089 (5)0.113 (6)0.012 (4)0.012 (4)0.024 (4)
C110.085 (5)0.078 (5)0.105 (6)0.006 (4)0.000 (4)0.008 (4)
C120.049 (3)0.042 (4)0.068 (4)0.004 (3)0.004 (3)0.012 (3)
C130.051 (3)0.046 (4)0.069 (4)0.006 (3)0.004 (3)0.008 (3)
C140.068 (4)0.041 (4)0.074 (4)0.004 (3)0.015 (3)0.008 (3)
C150.056 (4)0.048 (4)0.078 (5)0.008 (3)0.002 (3)0.018 (4)
C160.065 (4)0.062 (5)0.072 (5)0.006 (4)0.010 (3)0.021 (4)
C170.049 (3)0.057 (4)0.063 (4)0.004 (3)0.006 (3)0.002 (3)
C180.145 (7)0.078 (6)0.182 (9)0.055 (6)0.032 (6)0.026 (6)
C190.049 (3)0.033 (4)0.073 (5)0.002 (3)0.004 (3)0.003 (3)
C200.060 (4)0.047 (4)0.066 (4)0.003 (3)0.012 (3)0.001 (3)
C210.078 (4)0.058 (4)0.069 (4)0.005 (4)0.003 (4)0.016 (4)
C220.068 (4)0.055 (5)0.068 (5)0.001 (4)0.002 (4)0.020 (4)
C230.058 (4)0.043 (4)0.081 (5)0.003 (3)0.002 (4)0.012 (3)
C240.071 (4)0.042 (4)0.064 (4)0.001 (3)0.004 (3)0.002 (3)
C250.106 (6)0.085 (6)0.133 (7)0.011 (5)0.009 (5)0.044 (5)
C260.051 (4)0.174 (8)0.077 (5)0.012 (5)0.021 (4)0.000 (5)
C270.067 (5)0.185 (9)0.091 (6)0.014 (5)0.008 (4)0.035 (5)
Geometric parameters (Å, º) top
O1—C71.313 (6)C11—H11A0.9600
O1—C91.451 (6)C11—H11B0.9600
O2—C81.338 (6)C11—H11C0.9600
O2—C91.415 (6)C12—C131.371 (7)
O3—C71.199 (6)C12—C171.389 (7)
O4—C81.188 (5)C13—C141.371 (7)
O5—C271.460 (7)C13—H130.9300
O5—C41.492 (7)C14—C151.382 (7)
O6—C41.225 (7)C14—H140.9300
O6—C261.377 (7)C15—C161.372 (8)
O7—C221.353 (6)C16—C171.380 (7)
O7—C251.410 (7)C16—H160.9300
O8—C151.368 (6)C17—H170.9300
O8—C181.406 (8)C18—H18A0.9600
C1—C81.500 (7)C18—H18B0.9600
C1—C71.507 (7)C18—H18C0.9600
C1—C21.562 (7)C19—C201.380 (7)
C1—C61.590 (6)C19—C241.397 (7)
C2—C31.440 (7)C20—C211.384 (7)
C2—C121.506 (7)C20—H200.9300
C2—H20.9800C21—C221.374 (7)
C3—C41.605 (8)C21—H210.9300
C3—H3A0.9700C22—C231.378 (7)
C3—H3B0.9700C23—C241.372 (7)
C4—C51.570 (8)C23—H230.9300
C5—C61.428 (7)C24—H240.9300
C5—H5A0.9700C25—H25A0.9600
C5—H5B0.9700C25—H25B0.9600
C6—C191.512 (7)C25—H25C0.9600
C6—H60.9800C26—C271.400 (8)
C9—C111.466 (7)C26—H26A0.9700
C9—C101.486 (7)C26—H26B0.9700
C10—H10A0.9600C27—H27A0.9700
C10—H10B0.9600C27—H27B0.9700
C10—H10C0.9600
C7—O1—C9125.0 (4)C9—C11—H11C109.5
C8—O2—C9125.3 (4)H11A—C11—H11C109.5
C27—O5—C4103.0 (5)H11B—C11—H11C109.5
C4—O6—C26107.6 (6)C13—C12—C17117.3 (5)
C22—O7—C25119.0 (5)C13—C12—C2122.5 (5)
C15—O8—C18117.3 (5)C17—C12—C2120.2 (6)
C8—C1—C7113.3 (4)C12—C13—C14122.2 (5)
C8—C1—C2109.2 (4)C12—C13—H13118.9
C7—C1—C2107.5 (4)C14—C13—H13118.9
C8—C1—C6109.3 (4)C13—C14—C15120.0 (6)
C7—C1—C6107.0 (4)C13—C14—H14120.0
C2—C1—C6110.5 (4)C15—C14—H14120.0
C3—C2—C12116.3 (5)O8—C15—C16115.9 (6)
C3—C2—C1114.2 (5)O8—C15—C14125.3 (6)
C12—C2—C1110.8 (4)C16—C15—C14118.8 (6)
C3—C2—H2104.7C15—C16—C17120.7 (6)
C12—C2—H2104.7C15—C16—H16119.7
C1—C2—H2104.7C17—C16—H16119.7
C2—C3—C4117.1 (6)C16—C17—C12120.9 (6)
C2—C3—H3A108.0C16—C17—H17119.6
C4—C3—H3A108.0C12—C17—H17119.6
C2—C3—H3B108.0O8—C18—H18A109.5
C4—C3—H3B108.0O8—C18—H18B109.5
H3A—C3—H3B107.3H18A—C18—H18B109.5
O6—C4—O5112.6 (6)O8—C18—H18C109.5
O6—C4—C5113.2 (6)H18A—C18—H18C109.5
O5—C4—C5106.5 (5)H18B—C18—H18C109.5
O6—C4—C3113.4 (6)C20—C19—C24117.1 (5)
O5—C4—C3104.8 (5)C20—C19—C6122.6 (5)
C5—C4—C3105.6 (5)C24—C19—C6120.3 (6)
C6—C5—C4116.8 (5)C19—C20—C21122.0 (6)
C6—C5—H5A108.1C19—C20—H20119.0
C4—C5—H5A108.1C21—C20—H20119.0
C6—C5—H5B108.1C22—C21—C20119.7 (6)
C4—C5—H5B108.1C22—C21—H21120.1
H5A—C5—H5B107.3C20—C21—H21120.1
C5—C6—C19117.0 (5)O7—C22—C21115.8 (6)
C5—C6—C1114.6 (5)O7—C22—C23124.9 (6)
C19—C6—C1111.4 (4)C21—C22—C23119.3 (6)
C5—C6—H6104.0C24—C23—C22120.7 (6)
C19—C6—H6104.0C24—C23—H23119.6
C1—C6—H6104.0C22—C23—H23119.6
O3—C7—O1116.7 (5)C23—C24—C19121.1 (6)
O3—C7—C1122.1 (5)C23—C24—H24119.4
O1—C7—C1121.2 (5)C19—C24—H24119.4
O4—C8—O2114.5 (5)O7—C25—H25A109.5
O4—C8—C1124.6 (5)O7—C25—H25B109.5
O2—C8—C1120.8 (5)H25A—C25—H25B109.5
O2—C9—O1114.1 (4)O7—C25—H25C109.5
O2—C9—C11108.6 (5)H25A—C25—H25C109.5
O1—C9—C11106.1 (5)H25B—C25—H25C109.5
O2—C9—C10107.7 (5)O6—C26—C27113.5 (6)
O1—C9—C10106.6 (5)O6—C26—H26A108.9
C11—C9—C10113.8 (5)C27—C26—H26A108.9
C9—C10—H10A109.5O6—C26—H26B108.9
C9—C10—H10B109.5C27—C26—H26B108.9
H10A—C10—H10B109.5H26A—C26—H26B107.7
C9—C10—H10C109.5C26—C27—O5102.1 (5)
H10A—C10—H10C109.5C26—C27—H27A111.3
H10B—C10—H10C109.5O5—C27—H27A111.3
C9—C11—H11A109.5C26—C27—H27B111.3
C9—C11—H11B109.5O5—C27—H27B111.3
H11A—C11—H11B109.5H27A—C27—H27B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O4i0.932.533.449 (3)168
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H30O8
Mr482.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.977 (5), 20.162 (9), 12.508 (6)
β (°) 94.934 (8)
V3)2507 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11754, 4126, 1349
Rint0.104
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.187, 1.01
No. of reflections4126
No. of parameters316
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O4i0.932.533.449 (3)168
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) and the Graduate Foundation of Xuzhou Normal University (grant No. 08YLB028) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S. & Khanwelkar, R. R. (2005). Tetrahedron Lett. 46, 7787–7792.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDavidson, D. & Bernhard, S. A. (1948). J. Am. Chem. Soc. 70, 3426–3428.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMeldrum, A. N. (1908). J. Chem. Soc. 93, 598–601.  CrossRef CAS Google Scholar
First citationMuller, F. L., Constantieux, T. & Rodriguez, J. (2005). J. Am. Chem. Soc. 127, 17176–17177.  Web of Science CrossRef PubMed Google Scholar
First citationRamachary, D. B. & Barbas, C. F. III (2004). Chem. Eur. J. 10, 5323–5331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamachary, D. B., Chowdari, N. S. & Barbas, C. F. III (2003). Angew. Chem. Int. Ed. 42, 4233–4237.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTietze, L. F. & Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32, 131–163.  CrossRef Web of Science Google Scholar
First citationTietze, L. F., Evers, T. H. & Topken, E. (2001). Angew. Chem. Int. Ed. 40, 903–905.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1076
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds