organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1155

2-[(4-Chloro­phen­yl)imino­meth­yl]hydro­quinone

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit–Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit–Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 17 April 2009; accepted 24 April 2009; online 30 April 2009)

The title compound, C13H10ClNO2, exists in the phenol–imine form in the crystal, and the aromatic rings are oriented at a dihedral angle of 2.82 (9)°. An intra­molecular O—H⋯N hydrogen bond results in the formation of a planar six-membered ring. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For general background to o-hydr­oxy Schiff bases, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345-1360.]); Hökelek et al. (2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]); Maslen & Waters (1975[Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.]); Moustakali-Mavridis et al. (1980[Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]). For related structures, see: Filarowski et al. (2003[Filarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct. 644, 187-195.]); Karadayı et al. (2003[Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851-o853.]); Yıldız et al. (1998[Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO2

  • Mr = 247.67

  • Monoclinic, P 21 /c

  • a = 20.3347 (14) Å

  • b = 4.5848 (2) Å

  • c = 12.0383 (9) Å

  • β = 98.231 (6)°

  • V = 1110.78 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.80 × 0.40 × 0.06 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.819, Tmax = 0.978

  • 15373 measured reflections

  • 2185 independent reflections

  • 1575 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 0.95

  • 2185 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.6270 (18) 147
O2—H2⋯O2i 0.82 2.04 2.7631 (13) 147
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

o-Hydroxy Schiff bases derived from the reactions of o-hydroxyaldehydes with aniline have been examined extensively (Calligaris et al., 1972; Maslen & Waters, 1975). In general, o-hydroxy Schiff bases exhibit two possible tautomeric forms, namely, phenol-imine and keto-amine. Naphthaldimine and salicylaldimine can also exist in the phenol-imine and keto-amine forms, respectively depending on the stereochemistry of the molecule and the type of nitrogen substituents in naphthaldimine and salicylaldimine Schiff bases (Hökelek et al., 2004). Schiff base compounds display interesting photochromic and thermochromic features and can be classified in terms of these ( Moustakali-Mavridis et al., 1980; Hadjoudis et al., 1987). Photo- and thermochromism arise via H atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

In the title compound (Fig. 1), the phenol-imine form is favored over the keto-amine form, as indicated by C13-O1 [1.356 (2) Å] and C7-N1 [1.280 (2) Å] bonds, which are in accordance with the corresponding values in a similar compound [C-O = 1.352 (3) and C-N = 1.280 (4) Å; Karadayı et al., 2003]. As a common feature of o-hydroxysalicylidene systems, the title compound displays a strong hydrogen bond between atoms N1 and O1 (Filarowski et al., 2003; Yıldız et al., 1998).

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound caused by planarity of the molecule; the dihedral angle between rings A (C1-C6) and B (C8-C13) is 2.82 (9)°. Intramolecular O-H···N hydrogen bond (Table 1) results in the formation of a planar six-membered ring C (O1/N1/C7/C8/C13/H1), which is oriented with respect to rings A and B at dihedral angles of A/C = 2.97 (8) and B/C = 1.35 (8) °. So, they are nearly coplanar.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to o-hydroxy Schiff bases, see: Calligaris et al. (1972); Hadjoudis et al. (1987); Hökelek et al. (2004); Maslen & Waters (1975); Moustakali-Mavridis et al. (1980); Xu et al. (1994). For related structures, see: Filarowski et al. (2003); Karadayı et al. (2003); Yıldız et al. (1998).

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 2,5-dihydroxybenzaldehyde (0.034 g 0.246 mmol) in ethanol (20 ml) and a solution containing 4-chloroaniline (0.031 g 0.246 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield; 69%; m.p. 439-441 K).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-RED32 (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-[(4-Chlorophenyl)iminomethyl]hydroquinone top
Crystal data top
C13H10ClNO2F(000) = 512
Mr = 247.67Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13223 reflections
a = 20.3347 (14) Åθ = 1.7–27.2°
b = 4.5848 (2) ŵ = 0.33 mm1
c = 12.0383 (9) ÅT = 296 K
β = 98.231 (6)°Plate, brown
V = 1110.78 (12) Å30.80 × 0.40 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2185 independent reflections
Radiation source: fine-focus sealed tube1575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = 2525
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 55
Tmin = 0.819, Tmax = 0.978l = 1414
15373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H10ClNO2V = 1110.78 (12) Å3
Mr = 247.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.3347 (14) ŵ = 0.33 mm1
b = 4.5848 (2) ÅT = 296 K
c = 12.0383 (9) Å0.80 × 0.40 × 0.06 mm
β = 98.231 (6)°
Data collection top
Stoe IPDS-II
diffractometer
2185 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1575 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.978Rint = 0.069
15373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 0.95Δρmax = 0.13 e Å3
2185 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Experimental. 370 frames, detector distance = 120 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46483 (2)1.40871 (10)0.33464 (4)0.06076 (18)
O10.21937 (7)0.2322 (3)0.60021 (10)0.0600 (4)
H10.24410.35000.57590.090*
O20.03814 (6)0.1943 (3)0.25297 (11)0.0554 (3)
H20.01270.31150.27570.083*
N10.26643 (6)0.5541 (3)0.44912 (11)0.0404 (3)
C10.31206 (7)0.7617 (3)0.41651 (14)0.0390 (3)
C20.35972 (8)0.8701 (4)0.50029 (14)0.0469 (4)
H2A0.35990.80790.57390.056*
C30.40681 (8)1.0686 (4)0.47659 (15)0.0491 (4)
H30.43881.13800.53340.059*
C40.40585 (8)1.1623 (3)0.36807 (15)0.0445 (4)
C50.35838 (9)1.0629 (4)0.28379 (15)0.0499 (4)
H50.35781.13040.21080.060*
C60.31162 (8)0.8628 (4)0.30758 (14)0.0480 (4)
H60.27960.79540.25040.058*
C70.22399 (8)0.4302 (3)0.37519 (13)0.0409 (4)
H70.22380.47770.30000.049*
C80.17625 (7)0.2186 (3)0.40433 (13)0.0384 (3)
C90.13019 (8)0.1001 (3)0.31857 (14)0.0421 (4)
H90.13120.15610.24460.051*
C100.08364 (8)0.0975 (3)0.34244 (14)0.0427 (4)
C110.08231 (9)0.1840 (4)0.45228 (16)0.0510 (4)
H110.05040.31640.46860.061*
C120.12807 (9)0.0745 (4)0.53729 (15)0.0530 (4)
H120.12740.13600.61070.064*
C130.17529 (8)0.1273 (4)0.51433 (13)0.0436 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0545 (3)0.0499 (3)0.0821 (4)0.0131 (2)0.0244 (2)0.0049 (2)
O10.0675 (8)0.0733 (8)0.0374 (7)0.0226 (7)0.0010 (6)0.0007 (6)
O20.0450 (7)0.0519 (7)0.0651 (8)0.0090 (5)0.0062 (6)0.0033 (6)
N10.0395 (7)0.0397 (7)0.0417 (7)0.0030 (6)0.0047 (6)0.0009 (6)
C10.0380 (8)0.0355 (7)0.0436 (9)0.0002 (6)0.0065 (7)0.0012 (7)
C20.0499 (9)0.0477 (9)0.0426 (9)0.0046 (7)0.0049 (7)0.0003 (7)
C30.0448 (9)0.0481 (9)0.0527 (11)0.0080 (8)0.0012 (7)0.0062 (8)
C40.0402 (9)0.0367 (8)0.0590 (11)0.0017 (6)0.0148 (8)0.0036 (7)
C50.0546 (10)0.0507 (9)0.0457 (10)0.0048 (8)0.0115 (8)0.0037 (8)
C60.0469 (9)0.0514 (10)0.0446 (10)0.0094 (7)0.0025 (7)0.0003 (8)
C70.0436 (8)0.0408 (8)0.0383 (9)0.0014 (7)0.0062 (7)0.0019 (7)
C80.0380 (8)0.0371 (8)0.0400 (9)0.0013 (6)0.0050 (7)0.0007 (6)
C90.0445 (9)0.0414 (8)0.0398 (9)0.0004 (7)0.0036 (7)0.0026 (7)
C100.0360 (8)0.0390 (8)0.0514 (10)0.0006 (7)0.0008 (7)0.0037 (7)
C110.0454 (10)0.0472 (9)0.0622 (12)0.0074 (7)0.0141 (8)0.0023 (8)
C120.0591 (11)0.0559 (10)0.0458 (10)0.0076 (9)0.0138 (8)0.0056 (8)
C130.0444 (9)0.0474 (9)0.0391 (9)0.0027 (7)0.0060 (7)0.0019 (7)
Geometric parameters (Å, º) top
O1—H10.8200C7—N11.280 (2)
O2—H20.8200C7—C81.451 (2)
C1—C21.387 (2)C7—H70.9300
C1—C61.390 (2)C8—C131.392 (2)
C1—N11.4229 (19)C8—C91.401 (2)
C2—C31.380 (2)C9—C101.370 (2)
C2—H2A0.9300C9—H90.9300
C3—C41.373 (3)C10—C111.384 (2)
C3—H30.9300C10—O21.3883 (19)
C4—C51.374 (2)C11—C121.376 (3)
C4—Cl11.7365 (16)C11—H110.9300
C5—C61.381 (2)C12—C131.389 (2)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—O11.3557 (19)
C13—O1—H1109.5N1—C7—C8122.44 (14)
C10—O2—H2109.5N1—C7—H7118.8
C7—N1—C1120.41 (14)C8—C7—H7118.8
C2—C1—C6118.42 (15)C13—C8—C9119.06 (15)
C2—C1—N1117.03 (14)C13—C8—C7122.16 (14)
C6—C1—N1124.55 (14)C9—C8—C7118.78 (14)
C3—C2—C1121.29 (16)C10—C9—C8120.75 (15)
C3—C2—H2A119.4C10—C9—H9119.6
C1—C2—H2A119.4C8—C9—H9119.6
C4—C3—C2119.16 (16)C9—C10—C11119.88 (15)
C4—C3—H3120.4C9—C10—O2116.90 (15)
C2—C3—H3120.4C11—C10—O2123.20 (15)
C3—C4—C5120.78 (15)C12—C11—C10120.16 (16)
C3—C4—Cl1120.53 (13)C12—C11—H11119.9
C5—C4—Cl1118.69 (14)C10—C11—H11119.9
C4—C5—C6119.93 (16)C11—C12—C13120.54 (16)
C4—C5—H5120.0C11—C12—H12119.7
C6—C5—H5120.0C13—C12—H12119.7
C5—C6—C1120.39 (15)O1—C13—C12118.99 (15)
C5—C6—H6119.8O1—C13—C8121.41 (14)
C1—C6—H6119.8C12—C13—C8119.59 (15)
C8—C7—N1—C1179.65 (13)N1—C7—C8—C9178.06 (15)
C2—C1—N1—C7175.30 (14)C13—C8—C9—C101.7 (2)
C6—C1—N1—C75.2 (2)C7—C8—C9—C10179.12 (14)
C6—C1—C2—C31.5 (2)C8—C9—C10—C110.7 (2)
N1—C1—C2—C3178.92 (14)C8—C9—C10—O2177.31 (14)
C1—C2—C3—C40.7 (3)C9—C10—C11—C120.7 (3)
C2—C3—C4—C50.6 (3)O2—C10—C11—C12178.57 (15)
C2—C3—C4—Cl1179.27 (12)C10—C11—C12—C131.1 (3)
C3—C4—C5—C61.1 (3)C11—C12—C13—O1179.57 (16)
Cl1—C4—C5—C6178.81 (13)C11—C12—C13—C80.1 (3)
C4—C5—C6—C10.2 (3)C9—C8—C13—O1179.08 (14)
C2—C1—C6—C51.1 (2)C7—C8—C13—O10.1 (2)
N1—C1—C6—C5179.43 (15)C9—C8—C13—C121.3 (2)
N1—C7—C8—C132.7 (2)C7—C8—C13—C12179.54 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.6270 (18)147
O2—H2···O2i0.822.042.7631 (13)147
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10ClNO2
Mr247.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)20.3347 (14), 4.5848 (2), 12.0383 (9)
β (°) 98.231 (6)
V3)1110.78 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.80 × 0.40 × 0.06
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.819, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15373, 2185, 1575
Rint0.069
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 0.95
No. of reflections2185
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.25

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.6270 (18)147.2
O2—H2···O2i0.822.042.7631 (13)146.7
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A., Koll, A. & Glowiaka, T. (2003). J. Mol. Struct. 644, 187–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaradayı, N., Gözüyeşil, S., Güzel, B., Kazak, Canan & Büyükgüngör, O. (2003). Acta Cryst. E59, o851–o853.  CrossRef IUCr Journals Google Scholar
First citationMaslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137–176.  CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1–10.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1155
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds