organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1172

4-{2-Meth­­oxy-6-[(4-methyl­phen­yl)imino­meth­yl]phen­­oxy}phthalo­nitrile

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 17 April 2009; accepted 24 April 2009; online 30 April 2009)

In the mol­ecule of the title compound, C23H17N3O2, the methoxy­phenyl ring is oriented at dihedral angles of 13.34 (12) and 88.83 (12)° with respect to the methyl­phenyl and phthalonitrile rings, respectively; the dihedral angle between methyl­phenyl and phthalonitrile rings is 89.67 (10)°. In the crystal structure, weak inter­molecular C—H⋯N inter­actions link mol­ecules into chains. A weak C—H⋯π inter­action is also found..

Related literature

For a related structure, see: Ocak İskeleli et al. (2005[Ocak İskeleli, N., Atalay, S., Ağar, E. & Akdemir, N. (2005). Acta Cryst. E61, o2294-o2295.]). For general background to substituted phthalonitriles, see: McKeown (1998[McKeown, N. B. (1998). In Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.]); Leznoff & Lever (1989–1996[Leznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1-4. Weinheim, New York: VCH Publishers Inc.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3O2

  • Mr = 367.40

  • Monoclinic, P 21 /c

  • a = 9.3549 (5) Å

  • b = 23.6606 (13) Å

  • c = 8.9317 (5) Å

  • β = 97.256 (4)°

  • V = 1961.13 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.67 × 0.36 × 0.20 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.703, Tmax = 0.952

  • 10306 measured reflections

  • 3680 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.122

  • S = 0.96

  • 3680 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.93 2.62 3.483 (3) 154
C18—H18⋯Cg2ii 0.93 2.77 3.694 (3) 171
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y, z+1. Cg2 is the centroid of the C9–C14 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally and non-peripherally substituted phthalocyanines and subphthalocyanines (McKeown, 1998; Leznoff & Lever, 1989-1996). In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread applications in catalysis, in optical recording, as photoconductive materials, in photo-dynamic therapy and as chemical sensors (Leznoff & Lever, 1989-1996). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The N2C22 [1.133 (3) Å] and N3C23 [1.145 (3) Å] bonds show NC triple bond character and are in good agreement with the literature values (Ocak İskeleli et al., 2005). Rings A (C1-C6), B (C9-C14) and C (C16-C21) are, of course, planar, and they are oriented at dihedral angles of A/B = 13.34 (12), A/C = 88.83 (12) and B/C = 89.67 (10) °.

In the crystal structure, weak intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. There also exists a weak C-H···π interaction (Table 1).

Related literature top

For a related structure, see: Ocak İskeleli et al. (2005). For general background to substituted phthalonitriles, see: McKeown (1998); Leznoff & Lever (1989–1996). For bond-length data, see: Allen et al. (1987). Cg2 is the centroid of the C9–C14 ring.

Experimental top

For the preparation of the title compound, potasium carbonato (0.9 g, 6.58 mmol) was added to a solution of solid o-vaniline (0.5 g, 3.29 mmol) in DMF. The mixture was stirred for 30 min under nitrogen atmosphere. 4-Nitrophtalonitrile solution in DMF was added. The mixture was stirred for 48 h at 323 K under nitrogen atmosphere and poured into ice-water (150 g). The product 2-(3,4-dicyanophenoxy)-3-methoxybenzaldehyde was filtered off and washed with water. The title compound was prepared by refluxing a mixture of a solution containing 2-(3,4-Dicyanophenoxy)-3-methoxybenzaldehyde (0.5 g, 1.799 mmol) in ethanol (20 ml) and a solution containing 4-methylaniline (0.218 g 1.799 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield; 55%, m.p. 427-429 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-{2-Methoxy-6-[(4-methylphenyl)iminomethyl]phenoxy}phthalonitrile top
Crystal data top
C23H17N3O2F(000) = 768
Mr = 367.40Dx = 1.244 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9188 reflections
a = 9.3549 (5) Åθ = 1.7–26.2°
b = 23.6606 (13) ŵ = 0.08 mm1
c = 8.9317 (5) ÅT = 296 K
β = 97.256 (4)°Prism, yellow
V = 1961.13 (19) Å30.67 × 0.36 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
3680 independent reflections
Radiation source: fine-focus sealed tube1962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 6.67 pixels mm-1θmax = 25.6°, θmin = 1.7°
ω scansh = 1110
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2828
Tmin = 0.703, Tmax = 0.952l = 1010
10306 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
3680 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C23H17N3O2V = 1961.13 (19) Å3
Mr = 367.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3549 (5) ŵ = 0.08 mm1
b = 23.6606 (13) ÅT = 296 K
c = 8.9317 (5) Å0.67 × 0.36 × 0.20 mm
β = 97.256 (4)°
Data collection top
Stoe IPDS-II
diffractometer
3680 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1962 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.952Rint = 0.072
10306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.96Δρmax = 0.12 e Å3
3680 reflectionsΔρmin = 0.10 e Å3
253 parameters
Special details top

Experimental. 140 frames, detector distance = 130 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38836 (16)0.44741 (6)0.57255 (15)0.0725 (4)
O20.49525 (18)0.52245 (6)0.77461 (17)0.0879 (5)
N10.0395 (2)0.47793 (7)0.26224 (19)0.0737 (5)
N20.4483 (3)0.21068 (11)0.7035 (4)0.1657 (14)
N30.1213 (3)0.23410 (10)0.9455 (3)0.1180 (9)
C10.2188 (2)0.51464 (8)0.4521 (2)0.0659 (6)
C20.1712 (3)0.57046 (9)0.4401 (2)0.0768 (6)
H20.09690.58050.36570.092*
C30.2339 (3)0.61054 (9)0.5379 (2)0.0798 (7)
H30.20280.64780.52730.096*
C40.3424 (3)0.59675 (9)0.6520 (2)0.0760 (7)
H40.38280.62450.71810.091*
C50.3905 (2)0.54177 (9)0.6673 (2)0.0687 (6)
C60.3289 (2)0.50179 (8)0.5654 (2)0.0644 (5)
C70.5596 (3)0.56217 (11)0.8831 (3)0.1040 (9)
H7A0.62560.54290.95690.156*
H7B0.48590.58000.93200.156*
H7C0.61060.59030.83330.156*
C80.1525 (3)0.46997 (9)0.3529 (2)0.0727 (6)
H80.19540.43440.35680.087*
C90.0244 (2)0.43225 (9)0.1744 (2)0.0683 (6)
C100.0023 (3)0.37542 (10)0.2086 (2)0.0818 (7)
H100.06240.36490.29170.098*
C110.0759 (3)0.33451 (10)0.1202 (3)0.0872 (7)
H110.05990.29670.14500.105*
C120.1731 (3)0.34819 (11)0.0046 (3)0.0870 (7)
C130.1944 (3)0.40459 (11)0.0376 (3)0.0854 (7)
H130.25890.41490.12090.102*
C140.1221 (2)0.44613 (10)0.0501 (2)0.0761 (6)
H140.13910.48390.02540.091*
C150.2535 (4)0.30258 (13)0.0997 (4)0.1312 (12)
H15A0.28340.31700.19930.197*
H15B0.33670.29130.05430.197*
H15C0.19140.27060.10590.197*
C160.3328 (2)0.40673 (8)0.6576 (2)0.0626 (6)
C170.2221 (3)0.41613 (8)0.7412 (2)0.0674 (6)
H170.18230.45200.74520.081*
C180.1699 (3)0.37193 (9)0.8193 (2)0.0728 (6)
H180.09520.37840.87670.087*
C190.2270 (3)0.31831 (9)0.8135 (3)0.0745 (6)
C200.3403 (3)0.30971 (9)0.7282 (3)0.0793 (7)
C210.3937 (3)0.35393 (9)0.6509 (3)0.0776 (7)
H210.46990.34810.59510.093*
C220.4004 (3)0.25418 (11)0.7156 (4)0.1104 (10)
C230.1688 (3)0.27176 (10)0.8882 (3)0.0904 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0718 (10)0.0594 (9)0.0864 (10)0.0058 (8)0.0110 (8)0.0032 (7)
O20.0908 (12)0.0751 (10)0.0908 (10)0.0005 (9)0.0153 (9)0.0078 (8)
N10.0850 (14)0.0644 (11)0.0691 (10)0.0018 (10)0.0001 (10)0.0018 (9)
N20.156 (3)0.0656 (15)0.262 (4)0.0429 (17)0.026 (3)0.0140 (19)
N30.159 (3)0.0703 (14)0.1152 (17)0.0202 (15)0.0180 (16)0.0176 (12)
C10.0758 (15)0.0581 (12)0.0637 (12)0.0014 (11)0.0079 (11)0.0006 (9)
C20.0941 (18)0.0625 (13)0.0720 (13)0.0039 (12)0.0039 (12)0.0086 (11)
C30.107 (2)0.0508 (12)0.0819 (15)0.0015 (12)0.0138 (14)0.0061 (11)
C40.0931 (19)0.0586 (13)0.0759 (14)0.0114 (13)0.0091 (13)0.0052 (10)
C50.0731 (15)0.0603 (13)0.0718 (13)0.0069 (11)0.0056 (11)0.0004 (10)
C60.0700 (14)0.0518 (11)0.0722 (13)0.0001 (11)0.0119 (11)0.0013 (10)
C70.101 (2)0.1008 (19)0.1020 (17)0.0055 (16)0.0182 (16)0.0239 (15)
C80.0841 (17)0.0602 (13)0.0723 (13)0.0028 (12)0.0044 (13)0.0034 (10)
C90.0737 (15)0.0658 (13)0.0644 (12)0.0017 (11)0.0045 (11)0.0013 (10)
C100.0931 (19)0.0699 (15)0.0781 (14)0.0045 (14)0.0053 (13)0.0021 (11)
C110.098 (2)0.0698 (15)0.0914 (16)0.0100 (14)0.0039 (14)0.0001 (13)
C120.0813 (18)0.0915 (18)0.0861 (16)0.0141 (14)0.0018 (14)0.0090 (14)
C130.0804 (18)0.0994 (19)0.0735 (15)0.0033 (15)0.0012 (13)0.0018 (13)
C140.0740 (16)0.0793 (15)0.0734 (13)0.0026 (13)0.0026 (12)0.0045 (11)
C150.130 (3)0.120 (2)0.134 (2)0.032 (2)0.022 (2)0.0259 (19)
C160.0624 (14)0.0501 (11)0.0714 (13)0.0010 (10)0.0061 (11)0.0064 (10)
C170.0770 (16)0.0477 (11)0.0750 (13)0.0066 (11)0.0003 (12)0.0028 (9)
C180.0842 (18)0.0575 (13)0.0750 (13)0.0002 (12)0.0029 (12)0.0007 (10)
C190.0826 (17)0.0507 (13)0.0829 (14)0.0001 (12)0.0184 (13)0.0014 (10)
C200.0807 (17)0.0462 (12)0.1017 (17)0.0116 (12)0.0253 (15)0.0064 (11)
C210.0691 (16)0.0583 (13)0.1014 (16)0.0125 (12)0.0047 (12)0.0136 (12)
C220.104 (2)0.0576 (15)0.159 (3)0.0155 (15)0.0258 (19)0.0029 (15)
C230.113 (2)0.0544 (14)0.0954 (17)0.0048 (14)0.0198 (15)0.0066 (12)
Geometric parameters (Å, º) top
C1—C61.384 (3)C11—H110.9300
C1—C21.393 (3)C12—C131.376 (3)
C1—C81.465 (3)C12—C151.513 (3)
C2—C31.370 (3)C13—C141.379 (3)
C2—H20.9300C13—H130.9300
C3—C41.384 (3)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.377 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—O21.361 (2)C16—O11.369 (2)
C5—C61.386 (3)C16—C171.369 (3)
C6—O11.400 (2)C16—C211.378 (3)
C7—O21.427 (3)C17—C181.381 (3)
C7—H7A0.9600C17—H170.9300
C7—H7B0.9600C18—C191.380 (3)
C7—H7C0.9600C18—H180.9300
C8—N11.262 (3)C19—C201.397 (3)
C8—H80.9300C19—C231.431 (4)
C9—C141.385 (3)C20—C211.381 (3)
C9—C101.389 (3)C20—C221.439 (3)
C9—N11.422 (3)C21—H210.9300
C10—C111.378 (3)C22—N21.133 (3)
C10—H100.9300C23—N31.145 (3)
C11—C121.385 (3)
C16—O1—C6119.67 (16)C10—C11—H11119.1
C5—O2—C7117.49 (18)C12—C11—H11119.1
C8—N1—C9120.00 (19)C13—C12—C11117.5 (2)
C6—C1—C2117.71 (19)C13—C12—C15121.6 (2)
C6—C1—C8120.19 (19)C11—C12—C15121.0 (3)
C2—C1—C8122.1 (2)C12—C13—C14121.5 (2)
C3—C2—C1120.1 (2)C12—C13—H13119.2
C3—C2—H2120.0C14—C13—H13119.2
C1—C2—H2120.0C13—C14—C9120.8 (2)
C2—C3—C4121.4 (2)C13—C14—H14119.6
C2—C3—H3119.3C9—C14—H14119.6
C4—C3—H3119.3C12—C15—H15A109.5
C5—C4—C3119.7 (2)C12—C15—H15B109.5
C5—C4—H4120.2H15A—C15—H15B109.5
C3—C4—H4120.2C12—C15—H15C109.5
O2—C5—C4125.72 (19)H15A—C15—H15C109.5
O2—C5—C6115.83 (19)H15B—C15—H15C109.5
C4—C5—C6118.5 (2)O1—C16—C17123.69 (18)
C1—C6—C5122.64 (19)O1—C16—C21115.2 (2)
C1—C6—O1119.32 (17)C17—C16—C21121.1 (2)
C5—C6—O1117.88 (19)C16—C17—C18119.5 (2)
O2—C7—H7A109.5C16—C17—H17120.2
O2—C7—H7B109.5C18—C17—H17120.2
H7A—C7—H7B109.5C19—C18—C17121.0 (2)
O2—C7—H7C109.5C19—C18—H18119.5
H7A—C7—H7C109.5C17—C18—H18119.5
H7B—C7—H7C109.5C18—C19—C20118.6 (2)
N1—C8—C1122.4 (2)C18—C19—C23121.2 (3)
N1—C8—H8118.8C20—C19—C23120.2 (2)
C1—C8—H8118.8C21—C20—C19120.6 (2)
C14—C9—C10118.1 (2)C21—C20—C22118.9 (3)
C14—C9—N1116.8 (2)C19—C20—C22120.4 (3)
C10—C9—N1125.02 (19)C16—C21—C20119.2 (2)
C11—C10—C9120.3 (2)C16—C21—H21120.4
C11—C10—H10119.9C20—C21—H21120.4
C9—C10—H10119.9N2—C22—C20178.9 (4)
C10—C11—C12121.8 (2)N3—C23—C19178.8 (3)
C1—C6—O1—C1691.4 (2)C2—C1—C8—N17.8 (3)
C5—C6—O1—C1693.0 (2)C14—C9—C10—C110.2 (4)
C17—C16—O1—C61.5 (3)N1—C9—C10—C11176.3 (2)
C21—C16—O1—C6176.75 (18)C9—C10—C11—C120.1 (4)
C4—C5—O2—C71.3 (3)C10—C11—C12—C130.2 (4)
C6—C5—O2—C7179.0 (2)C10—C11—C12—C15179.6 (3)
C1—C8—N1—C9176.67 (18)C11—C12—C13—C140.1 (4)
C14—C9—N1—C8162.8 (2)C15—C12—C13—C14179.4 (3)
C10—C9—N1—C821.0 (4)C12—C13—C14—C90.4 (4)
C6—C1—C2—C30.5 (3)C10—C9—C14—C130.5 (3)
C8—C1—C2—C3178.3 (2)N1—C9—C14—C13176.9 (2)
C1—C2—C3—C41.5 (4)O1—C16—C17—C18177.77 (19)
C2—C3—C4—C50.9 (4)C21—C16—C17—C180.4 (3)
C3—C4—C5—O2179.5 (2)C16—C17—C18—C190.5 (3)
C3—C4—C5—C60.8 (3)C17—C18—C19—C200.8 (3)
C2—C1—C6—C51.2 (3)C17—C18—C19—C23176.9 (2)
C8—C1—C6—C5176.7 (2)C18—C19—C20—C210.2 (3)
C2—C1—C6—O1174.27 (19)C23—C19—C20—C21177.5 (2)
C8—C1—C6—O17.9 (3)C18—C19—C20—C22178.3 (2)
O2—C5—C6—C1178.4 (2)C23—C19—C20—C220.6 (3)
C4—C5—C6—C11.8 (3)O1—C16—C21—C20177.32 (19)
O2—C5—C6—O16.1 (3)C17—C16—C21—C201.0 (3)
C4—C5—C6—O1173.70 (19)C19—C20—C21—C160.7 (3)
C6—C1—C8—N1169.9 (2)C22—C20—C21—C16177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.932.623.483 (3)154
C18—H18···Cg2ii0.932.773.694 (3)171
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H17N3O2
Mr367.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.3549 (5), 23.6606 (13), 8.9317 (5)
β (°) 97.256 (4)
V3)1961.13 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.67 × 0.36 × 0.20
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.703, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
10306, 3680, 1962
Rint0.072
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 0.96
No. of reflections3680
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.932.623.483 (3)154
C18—H18···Cg2ii0.932.773.694 (3)171
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y, z+1.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications, Vols. 1–4. Weinheim, New York: VCH Publishers Inc.  Google Scholar
First citationMcKeown, N. B. (1998). In Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.  Google Scholar
First citationOcak İskeleli, N., Atalay, S., Ağar, E. & Akdemir, N. (2005). Acta Cryst. E61, o2294–o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds