organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1033

Methyl 1-methyl-3-phenyl-1,2,3,3a,4,9b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Chemistry, National College, Thiruchirapalli, Tamil Nadu, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 30 March 2009; accepted 5 April 2009; online 10 April 2009)

In the title compound, C24H23NO3, the dihedral angle between the naphthalene ring system and the phenyl ring is 76.82 (6)°. The pyrrolidine ring adopts an envelope conformation. In the crystal, weak inter­molecular C—H⋯O and C—H⋯π inter­actions are observed.

Related literature

For the biological activity of chromenopyrrole, see: Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]); Tidey (1992[Tidey, J. W. (1992). Behav. Pharm. 3, 553-566.]); Carlson (1993[Carlson, J. (1993). Neur. Transm. 94, 11-19.]); Sokoloff et al. (1990[Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147-151.]); Wilner (1985[Wilner, P. (1985). Clin. Neuropharm. 18, Suppl. 1, 549-556.]); Sobral & Rocha Gonsalves (2001a[Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001a). J. Porphyrins Phthalocyanines, 5, 428-430.],b[Sobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001b). J. Porphyrins Phthalocyanines, 5, 861-866.]); Brockmann & Tour (1995[Brockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437-4447.]); Suslick et al. (1992[Suslick, K. S., Chen, C. T., Meredith, G. R. & Cheng, L. T. (1992). J. Am. Chem. Soc. 114, 6928-6930.]); Di Natale et al. (1998[Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & Amico, A. (1998). Sens. Actuators, B50, 162-168.]). For a related structure, see: Nirmala et al. (2008[Nirmala, S., Kamala, E. T. S., Sudha, L., Ramesh, E. & Raghunathan, R. (2008). Acta Cryst. E64, o649.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23NO3

  • Mr = 373.43

  • Monoclinic, P 21 /n

  • a = 13.2332 (6) Å

  • b = 10.3574 (4) Å

  • c = 15.0865 (6) Å

  • β = 111.530 (2)°

  • V = 1923.50 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEX2 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.987

  • 19089 measured reflections

  • 3499 independent reflections

  • 2413 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.02

  • 3499 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2i 0.98 2.53 3.347 (2) 141
C16—H16CCgii 0.96 2.79 3.689 (4) 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1. Cg is the centroid of the C4–C9 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrroles are also very useful precursors in porphyrin synthesis (Sobral & Rocha Gonsalves, 2001a,b), and as monomers for polymer chemistry (Brockmann & Tour, 1995), with applications ranging from nonlinear optical materials (Suslick et al., 1992) to electronic noses (Di Natale et al., 1998).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Nirmala et al., 2008). The six-membered heterocyclic ring [C7/O1/C11/C12/C13/C8] of the benzochromenopyrrole moiety adopts a half-chair conformation [O1—C7—C8—C13 = 0.5 (2)° and O1—C11—C12—C13 = -60.09 (17)°]. The sum of bond angles around N1 [332.37 (14)°] indicates the sp3 hybridized state of atom N1 in the molecule. The C16—N1—C13—C12 torsion angle is -173.40 (14)°, which corresponds to an antiperiplanar conformation.

The crystal packing is stabilized by weak intramolecular C—H···O and C—H···N interactions. In addition, the structure is stabilized by weak intermolecular C—H···O and C—H···π (C16—H16C···Cg; Cg is the centroid of ring defined by the atoms C4–C9) interactions (Table 1). The C11—H11A···N1 and C13—H13···O3 interactions each generate an S(5) graph set motif (Bernstein et al., 1995).

Related literature top

For the biological activity of chromenopyrrole, see: Caine (1993); Tidey (1992); Carlson (1993); Sokoloff et al. (1990); Wilner (1985); Sobral & Rocha Gonsalves (2001a,b); Brockmann & Tour (1995); Suslick et al. (1992); Di Natale et al. (1998). For a related structure, see: Nirmala et al. (2008). For graph-set notation, see: Bernstein et al. (1995). Cg is the centroid of the C4–C9 ring.

Experimental top

A mixture of (z)-methyl-5-(1-formylnathalen-2-yl-)-3-phenylpent -2-enoate and sarcosine were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
Methyl 1-methyl-3-phenyl-1,2,3,3a,4,9b- hexahydrobenzo[f]chromeno[4,3-b]pyrrole-3a-carboxylate top
Crystal data top
C24H23NO3F(000) = 792
Mr = 373.43Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3865 reflections
a = 13.2332 (6) Åθ = 1.8–25.3°
b = 10.3574 (4) ŵ = 0.09 mm1
c = 15.0865 (6) ÅT = 293 K
β = 111.530 (2)°Block, colourless
V = 1923.50 (14) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEX2 CCD
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω and ϕ scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1112
Tmin = 0.979, Tmax = 0.987l = 1818
19089 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3587P]
where P = (Fo2 + 2Fc2)/3
3499 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C24H23NO3V = 1923.50 (14) Å3
Mr = 373.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2332 (6) ŵ = 0.09 mm1
b = 10.3574 (4) ÅT = 293 K
c = 15.0865 (6) Å0.25 × 0.20 × 0.15 mm
β = 111.530 (2)°
Data collection top
Bruker Kappa APEX2 CCD
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2413 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.041
19089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
3499 reflectionsΔρmin = 0.14 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87620 (10)0.79656 (11)0.16896 (8)0.0560 (3)
O30.64358 (10)1.04425 (13)0.12731 (9)0.0610 (4)
C80.80155 (13)0.91239 (15)0.02018 (11)0.0404 (4)
O20.72839 (11)0.94550 (14)0.26458 (9)0.0684 (4)
C70.83173 (14)0.80090 (16)0.07191 (12)0.0473 (4)
N10.91939 (11)1.10692 (13)0.08087 (9)0.0452 (4)
C130.81799 (13)1.03987 (15)0.07102 (10)0.0388 (4)
H130.75581.09650.03930.047*
C90.74815 (13)0.90220 (16)0.08105 (12)0.0452 (4)
C110.91380 (14)0.91616 (15)0.21733 (12)0.0483 (4)
H11A0.98270.93870.21240.058*
H11B0.92580.90590.28430.058*
C100.70597 (14)1.00976 (19)0.14052 (12)0.0508 (4)
H100.71331.09150.11340.061*
C40.73409 (15)0.77937 (18)0.12524 (13)0.0553 (5)
C120.83340 (13)1.02418 (15)0.17618 (10)0.0394 (4)
C230.73092 (14)0.99806 (16)0.19506 (11)0.0439 (4)
C60.81600 (17)0.67864 (17)0.02815 (15)0.0605 (5)
H60.83730.60440.06500.073*
C170.95781 (14)1.15779 (15)0.32102 (11)0.0440 (4)
C150.88052 (14)1.15911 (15)0.21892 (11)0.0448 (4)
H150.81871.21340.21600.054*
C50.76969 (17)0.66982 (19)0.06782 (15)0.0665 (6)
H50.76130.58890.09640.080*
C160.93000 (15)1.15213 (18)0.00619 (12)0.0555 (5)
H16A0.87331.21300.03710.083*
H16B0.92441.08020.04790.083*
H16C0.99931.19310.00870.083*
C30.68054 (18)0.7705 (2)0.22541 (15)0.0715 (6)
H30.67170.69000.25460.086*
C221.06811 (15)1.14119 (17)0.34720 (13)0.0580 (5)
H221.09771.12950.30060.070*
C10.65478 (16)0.9971 (2)0.23651 (13)0.0629 (5)
H10.62801.06990.27380.076*
C20.64222 (18)0.8763 (3)0.27927 (15)0.0753 (6)
H20.60750.86850.34490.090*
C140.92485 (17)1.21276 (17)0.14582 (12)0.0580 (5)
H14A0.88111.28500.11170.070*
H14B0.99921.24170.17710.070*
C180.91714 (17)1.17418 (17)0.39259 (12)0.0571 (5)
H180.84281.18550.37650.069*
C190.9842 (2)1.1741 (2)0.48683 (14)0.0760 (7)
H190.95501.18460.53380.091*
C211.13528 (18)1.14174 (19)0.44215 (15)0.0725 (6)
H211.20971.13060.45880.087*
C201.0936 (2)1.1585 (2)0.51178 (15)0.0784 (7)
H201.13921.15940.57560.094*
C240.54215 (16)1.0313 (2)0.14187 (16)0.0749 (6)
H24A0.52980.94210.15180.112*
H24B0.48391.06280.08680.112*
H24C0.54531.08060.19670.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0678 (9)0.0358 (7)0.0620 (8)0.0033 (6)0.0211 (6)0.0046 (6)
O30.0449 (7)0.0785 (9)0.0673 (8)0.0114 (7)0.0296 (6)0.0219 (7)
C80.0387 (9)0.0373 (9)0.0525 (10)0.0033 (7)0.0254 (8)0.0041 (8)
O20.0685 (9)0.0824 (10)0.0587 (8)0.0099 (7)0.0284 (7)0.0197 (7)
C70.0473 (11)0.0413 (10)0.0600 (11)0.0024 (8)0.0278 (9)0.0016 (8)
N10.0440 (9)0.0439 (8)0.0500 (8)0.0079 (6)0.0199 (6)0.0019 (6)
C130.0379 (9)0.0367 (9)0.0441 (9)0.0004 (7)0.0180 (7)0.0023 (7)
C90.0407 (10)0.0490 (10)0.0540 (10)0.0075 (8)0.0270 (8)0.0092 (8)
C110.0501 (11)0.0396 (10)0.0527 (10)0.0019 (8)0.0159 (8)0.0033 (8)
C100.0472 (10)0.0607 (12)0.0481 (10)0.0038 (9)0.0217 (8)0.0073 (9)
C40.0563 (12)0.0537 (12)0.0659 (12)0.0100 (9)0.0343 (10)0.0151 (10)
C120.0400 (9)0.0372 (9)0.0411 (8)0.0006 (7)0.0151 (7)0.0032 (7)
C230.0505 (11)0.0385 (9)0.0441 (9)0.0032 (8)0.0190 (8)0.0006 (8)
C60.0731 (14)0.0364 (10)0.0847 (14)0.0042 (9)0.0437 (11)0.0044 (9)
C170.0488 (11)0.0331 (9)0.0479 (9)0.0020 (8)0.0150 (8)0.0029 (7)
C150.0481 (10)0.0374 (9)0.0470 (9)0.0000 (8)0.0151 (8)0.0005 (7)
C50.0817 (15)0.0477 (12)0.0858 (15)0.0156 (11)0.0492 (12)0.0239 (11)
C160.0533 (12)0.0587 (12)0.0626 (11)0.0069 (9)0.0310 (9)0.0072 (9)
C30.0717 (15)0.0794 (16)0.0716 (14)0.0169 (12)0.0357 (12)0.0354 (12)
C220.0532 (12)0.0536 (12)0.0621 (12)0.0017 (9)0.0151 (9)0.0105 (9)
C10.0578 (12)0.0812 (15)0.0518 (11)0.0006 (10)0.0225 (9)0.0056 (10)
C20.0688 (15)0.1018 (19)0.0555 (12)0.0036 (13)0.0228 (11)0.0226 (13)
C140.0734 (14)0.0471 (11)0.0495 (10)0.0171 (9)0.0178 (9)0.0005 (8)
C180.0661 (13)0.0527 (11)0.0553 (11)0.0083 (9)0.0255 (10)0.0086 (9)
C190.104 (2)0.0731 (15)0.0519 (12)0.0254 (13)0.0300 (13)0.0113 (10)
C210.0602 (14)0.0545 (13)0.0789 (15)0.0040 (10)0.0026 (12)0.0073 (11)
C200.103 (2)0.0590 (14)0.0502 (12)0.0214 (13)0.0010 (13)0.0019 (10)
C240.0524 (13)0.0869 (16)0.1010 (16)0.0095 (11)0.0467 (12)0.0171 (13)
Geometric parameters (Å, º) top
O1—C71.3637 (19)C17—C181.382 (2)
O1—C111.4311 (19)C17—C151.504 (2)
O3—C231.320 (2)C15—C141.531 (2)
O3—C241.444 (2)C15—H150.9800
C8—C71.369 (2)C5—H50.9300
C8—C91.432 (2)C16—H16A0.9600
C8—C131.502 (2)C16—H16B0.9600
O2—C231.1931 (18)C16—H16C0.9600
C7—C61.408 (2)C3—C21.347 (3)
N1—C161.449 (2)C3—H30.9300
N1—C141.454 (2)C22—C211.381 (3)
N1—C131.469 (2)C22—H220.9300
C13—C121.532 (2)C1—C21.389 (3)
C13—H130.9800C1—H10.9300
C9—C101.411 (2)C2—H20.9300
C9—C41.417 (2)C14—H14A0.9700
C11—C121.511 (2)C14—H14B0.9700
C11—H11A0.9700C18—C191.372 (3)
C11—H11B0.9700C18—H180.9300
C10—C11.361 (2)C19—C201.364 (3)
C10—H100.9300C19—H190.9300
C4—C51.400 (3)C21—C201.365 (3)
C4—C31.417 (3)C21—H210.9300
C12—C231.509 (2)C20—H200.9300
C12—C151.569 (2)C24—H24A0.9600
C6—C51.352 (3)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C17—C221.376 (2)
C7—O1—C11116.82 (12)C14—C15—C12103.10 (12)
C23—O3—C24116.58 (14)C17—C15—H15107.1
C7—C8—C9118.20 (15)C14—C15—H15107.1
C7—C8—C13119.55 (14)C12—C15—H15107.1
C9—C8—C13122.11 (14)C6—C5—C4121.67 (17)
O1—C7—C8124.11 (15)C6—C5—H5119.2
O1—C7—C6113.89 (16)C4—C5—H5119.2
C8—C7—C6121.97 (16)N1—C16—H16A109.5
C16—N1—C14111.70 (13)N1—C16—H16B109.5
C16—N1—C13116.73 (13)H16A—C16—H16B109.5
C14—N1—C13104.01 (13)N1—C16—H16C109.5
N1—C13—C8115.02 (13)H16A—C16—H16C109.5
N1—C13—C12100.13 (12)H16B—C16—H16C109.5
C8—C13—C12112.01 (13)C2—C3—C4121.4 (2)
N1—C13—H13109.8C2—C3—H3119.3
C8—C13—H13109.8C4—C3—H3119.3
C12—C13—H13109.8C17—C22—C21120.56 (19)
C10—C9—C4117.20 (15)C17—C22—H22119.7
C10—C9—C8123.04 (15)C21—C22—H22119.7
C4—C9—C8119.75 (16)C10—C1—C2120.6 (2)
O1—C11—C12111.76 (13)C10—C1—H1119.7
O1—C11—H11A109.3C2—C1—H1119.7
C12—C11—H11A109.3C3—C2—C1119.85 (19)
O1—C11—H11B109.3C3—C2—H2120.1
C12—C11—H11B109.3C1—C2—H2120.1
H11A—C11—H11B107.9N1—C14—C15105.93 (13)
C1—C10—C9121.78 (18)N1—C14—H14A110.6
C1—C10—H10119.1C15—C14—H14A110.6
C9—C10—H10119.1N1—C14—H14B110.6
C5—C4—C9118.71 (17)C15—C14—H14B110.6
C5—C4—C3122.04 (19)H14A—C14—H14B108.7
C9—C4—C3119.19 (19)C19—C18—C17121.3 (2)
C23—C12—C11109.62 (13)C19—C18—H18119.3
C23—C12—C13115.29 (13)C17—C18—H18119.3
C11—C12—C13108.05 (13)C20—C19—C18120.2 (2)
C23—C12—C15109.34 (13)C20—C19—H19119.9
C11—C12—C15112.14 (13)C18—C19—H19119.9
C13—C12—C15102.29 (12)C20—C21—C22120.7 (2)
O2—C23—O3123.16 (16)C20—C21—H21119.7
O2—C23—C12124.39 (16)C22—C21—H21119.7
O3—C23—C12112.40 (13)C19—C20—C21119.35 (19)
C5—C6—C7119.59 (18)C19—C20—H20120.3
C5—C6—H6120.2C21—C20—H20120.3
C7—C6—H6120.2O3—C24—H24A109.5
C22—C17—C18117.86 (16)O3—C24—H24B109.5
C22—C17—C15123.11 (16)H24A—C24—H24B109.5
C18—C17—C15119.03 (16)O3—C24—H24C109.5
C17—C15—C14116.40 (15)H24A—C24—H24C109.5
C17—C15—C12115.53 (13)H24B—C24—H24C109.5
C11—O1—C7—C813.5 (2)C13—C12—C23—O2155.96 (16)
C11—O1—C7—C6168.25 (15)C15—C12—C23—O289.50 (19)
C9—C8—C7—O1175.27 (14)C11—C12—C23—O3148.53 (14)
C13—C8—C7—O10.5 (2)C13—C12—C23—O326.37 (19)
C9—C8—C7—C62.8 (2)C15—C12—C23—O388.17 (16)
C13—C8—C7—C6178.56 (16)O1—C7—C6—C5178.20 (16)
C16—N1—C13—C866.33 (19)C8—C7—C6—C50.1 (3)
C14—N1—C13—C8170.14 (13)C22—C17—C15—C1431.9 (2)
C16—N1—C13—C12173.44 (13)C18—C17—C15—C14148.01 (16)
C14—N1—C13—C1249.91 (15)C22—C17—C15—C1289.3 (2)
C7—C8—C13—N194.95 (17)C18—C17—C15—C1290.82 (19)
C9—C8—C13—N189.46 (18)C23—C12—C15—C1788.85 (17)
C7—C8—C13—C1218.5 (2)C11—C12—C15—C1732.95 (19)
C9—C8—C13—C12157.09 (14)C13—C12—C15—C17148.48 (14)
C7—C8—C9—C10174.89 (15)C23—C12—C15—C14143.05 (14)
C13—C8—C9—C100.8 (2)C11—C12—C15—C1495.15 (16)
C7—C8—C9—C43.9 (2)C13—C12—C15—C1420.38 (16)
C13—C8—C9—C4179.52 (14)C7—C6—C5—C41.7 (3)
C7—O1—C11—C1244.22 (19)C9—C4—C5—C60.5 (3)
C4—C9—C10—C10.7 (2)C3—C4—C5—C6176.74 (18)
C8—C9—C10—C1179.46 (15)C5—C4—C3—C2176.87 (19)
C10—C9—C4—C5176.58 (16)C9—C4—C3—C20.4 (3)
C8—C9—C4—C52.3 (2)C18—C17—C22—C210.3 (3)
C10—C9—C4—C30.8 (2)C15—C17—C22—C21179.54 (17)
C8—C9—C4—C3179.63 (15)C9—C10—C1—C20.1 (3)
O1—C11—C12—C2366.29 (17)C4—C3—C2—C10.1 (3)
O1—C11—C12—C1360.09 (17)C10—C1—C2—C30.3 (3)
O1—C11—C12—C15172.07 (13)C16—N1—C14—C15164.03 (14)
N1—C13—C12—C23160.94 (13)C13—N1—C14—C1537.29 (17)
C8—C13—C12—C2376.68 (17)C17—C15—C14—N1118.28 (16)
N1—C13—C12—C1176.07 (15)C12—C15—C14—N19.28 (17)
C8—C13—C12—C1146.31 (17)C22—C17—C18—C190.0 (3)
N1—C13—C12—C1542.39 (15)C15—C17—C18—C19179.84 (17)
C8—C13—C12—C15164.78 (13)C17—C18—C19—C200.5 (3)
C24—O3—C23—O21.5 (3)C17—C22—C21—C200.1 (3)
C24—O3—C23—C12176.18 (15)C18—C19—C20—C210.7 (3)
C11—C12—C23—O233.8 (2)C22—C21—C20—C190.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N10.972.542.874 (2)100
C13—H13···O30.982.392.7366 (19)100
C15—H15···O2i0.982.533.347 (2)141
C16—H16C···Cgii0.962.793.689 (4)156
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H23NO3
Mr373.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.2332 (6), 10.3574 (4), 15.0865 (6)
β (°) 111.530 (2)
V3)1923.50 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEX2 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
19089, 3499, 2413
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02
No. of reflections3499
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···N10.972.542.874 (2)100
C13—H13···O30.982.392.7366 (19)100
C15—H15···O2i0.982.533.347 (2)141
C16—H16C···Cgii0.962.793.689 (4)156
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

Author thanks AMET University Management, India, for their kind support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBrockmann, T. W. & Tour, J. M. (1995). J. Am. Chem. Soc. 117, 4437–4447.  CrossRef CAS Web of Science
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science
First citationCarlson, J. (1993). Neur. Transm. 94, 11–19.
First citationDi Natale, C., Paolesse, R., Macagnano, A., Mantini, A., Goletti, C., Tarizzo, E. & Amico, A. (1998). Sens. Actuators, B50, 162–168.  CrossRef
First citationNirmala, S., Kamala, E. T. S., Sudha, L., Ramesh, E. & Raghunathan, R. (2008). Acta Cryst. E64, o649.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001a). J. Porphyrins Phthalocyanines, 5, 428–430.  Web of Science CrossRef CAS
First citationSobral, A. J. F. N. & Rocha Gonsalves, A. M. D. A. (2001b). J. Porphyrins Phthalocyanines, 5, 861–866.  Web of Science CrossRef CAS
First citationSokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSuslick, K. S., Chen, C. T., Meredith, G. R. & Cheng, L. T. (1992). J. Am. Chem. Soc. 114, 6928–6930.  CrossRef CAS Web of Science
First citationTidey, J. W. (1992). Behav. Pharm. 3, 553–566.  CrossRef CAS
First citationWilner, P. (1985). Clin. Neuropharm. 18, Suppl. 1, 549–556.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1033
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds