organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1027-o1028

(4-Chloro-2-fluoro­phen­yl)[1-(2,6-di­fluoro­phen­yl)but-3-en­yl]amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSyngene International Ltd., Biocon Park, Plot No. 2&3, Bommasandra 4th Phase, Jigani Link Road, Bangalore 560 100, India, cDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India, dDepartment of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and eCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 1 April 2009; accepted 5 April 2009; online 10 April 2009)

In the mol­ecule of the title homoallylic amine, C16H13ClF3N, the dihedral angle between the two benzene rings is 84.63 (4)°. Weak intra­molecular N—H⋯F hydrogen bonds generate S(6) and S(5) ring motifs. In the crystal structure, weak inter­molecuar N—H⋯F hydrogen bonds link mol­ecules into centrosymmetric dimers which are arranged in mol­ecular sheets parallel to the ac plane.

Related literature

For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to the bioactivity and applications of homoallylic amines, see: Edwards et al. (1998[Edwards, N., Macrichie, J. A. & Parsons, P. J. (1998). Tetrahedron Lett. 39, 3605-3608.]); Robert (1998[Robert, B. (1998). Chem. Rev. 98, 1407-1438.]); Sabine & Horst (1991[Sabine, L. & Horst, K. (1991). J. Org. Chem. 56, 5883-5889.]); Xie et al. (1989[Xie, J., Soleihac, J. M., Schimidt, C., Peyroux, J., Roques, B. P. & Fornie, Z. M. (1989). J. Med. Chem. 32, 1497-1503.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClF3N

  • Mr = 311.72

  • Monoclinic, P 21 /c

  • a = 10.8980 (1) Å

  • b = 14.0073 (2) Å

  • c = 10.1651 (1) Å

  • β = 113.018 (1)°

  • V = 1428.17 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.50 × 0.39 × 0.27 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.926

  • 32850 measured reflections

  • 7434 independent reflections

  • 6099 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.04

  • 7434 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯F1 0.886 (17) 2.510 (14) 2.8354 (9) 102.4 (11)
N1—H1N1⋯F3 0.886 (17) 2.306 (17) 2.6839 (9) 105.7 (14)
N1—H1N1⋯F1i 0.886 (17) 2.194 (17) 3.0639 (9) 167.1 (16)
C7—H7A⋯F2 0.98 2.38 2.8330 (10) 107
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Homoallylic amines are valuable intermediates in organic synthesis and as starting materials in the preparation of biologically active substances, resolving agents and chiral auxillaries for asymmetric synthesis (Sabine & Horst, 1991) and synthesis of β-amino acids (Xie et al., 1989), β-lactams (Edwards et al., 1998) and HIV-proteaseinhibitors (Robert, 1998). Prompted by these observations, we have synthesized the title compound and its crystal structure is presented herein.

In the molecular structure of the title homoallylic amine (I) (Fig. 1), angle between the mean planes of the benzene rings is 84.63 (4)°. The orientation of the but-3-enyl substituent group [C7/C14–C16] with respect to the 2,6-difluoro-phenyl ring is reflected in the torsion angle C8–C7–C14–C15 = 59.43 (9)° which indicates a (+)-syn-clinal conformation. The torsion angle C7–C14–C15–C16 = -122.17 (11)°. The bond distances in (I) have normal values (Allen et al., 1987).

In the structure, intramolecular N1—H1N1···F1 and N1—H1N1···F3 hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995) (Table 1). In the crystal structure, weak N—H···F hydrogen bonds (Table 1, Fig. 2) link molecules into centrosymmetric dimers and these dimers are arranged into molecular sheets parallel to the ac plane.

Related literature top

For standard bond lengths, see Allen et al. (1987). For hydrogen-bond motifs, see Bernstein et al. (1995). For background to the bioactivity and applications of homoallylic amines, see, for example: Edwards et al. (1998); Robert (1998); Sabine & Horst (1991); Xie et al. (1989). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 2,6-difluorobenzaldehyde (0.5 g, 3.5 mmol), 4-chloro-2-fluoro aniline (0.51 g, 3.5 mmol) and allyltributyltin (1.1 g, 3.5 mmol) in acetonitrile (5 ml), trifluoro acetic acid (0.04 g, 0.35 mmol) was added. The reaction mixture was stirred at 299 K under nitrogen atmosphere for 2 h. Completion of the reaction was monitored by TLC. The reaction mixture was then extracted with diethyl ether (3 x 20 ml) and the combined organic layer were concentrated in vacuum and purified by flash chromatography to afford the pure homoallylic amine. The yield was found to be 0.98 g (90% yield). Colorless block-shaped single crystals of the title compound was recrystalized in acetone by slow evaporation of the solvent, M.p 399–400 K.

Refinement top

Amine and =CH2 H atoms were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and 0.98 Å, Uiso = 1.2Ueq(C) for CH. The highest residual electron density peak is located at 0.63 Å from Cl1 and the deepest hole is located at 0.62 Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecluar structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are drawn as dash lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed along the b axis, showing the arrangement of the hydrogen-bonded dimers into molecular sheets. Hydrogen bonds are shown as dashed lines.
(4-Chloro-2-fluorophenyl)[1-(2,6-difluorophenyl)but-3-enyl]amine top
Crystal data top
C16H13ClF3NF(000) = 640
Mr = 311.72Dx = 1.450 Mg m3
Monoclinic, P21/cMelting point = 399–400 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.8980 (1) ÅCell parameters from 7434 reflections
b = 14.0073 (2) Åθ = 2.0–37.5°
c = 10.1651 (1) ŵ = 0.29 mm1
β = 113.018 (1)°T = 100 K
V = 1428.17 (3) Å3Block, colorless
Z = 40.50 × 0.39 × 0.27 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7434 independent reflections
Radiation source: sealed tube6099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 37.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1518
Tmin = 0.868, Tmax = 0.926k = 2223
32850 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.059P)2 + 0.3248P]
where P = (Fo2 + 2Fc2)/3
7434 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C16H13ClF3NV = 1428.17 (3) Å3
Mr = 311.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8980 (1) ŵ = 0.29 mm1
b = 14.0073 (2) ÅT = 100 K
c = 10.1651 (1) Å0.50 × 0.39 × 0.27 mm
β = 113.018 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6099 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.926Rint = 0.025
32850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.63 e Å3
7434 reflectionsΔρmin = 0.86 e Å3
202 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35924 (3)0.625873 (17)1.05066 (4)0.03621 (8)
F10.89730 (5)0.44888 (4)0.88286 (5)0.02227 (11)
F20.65542 (6)0.64050 (4)0.48567 (6)0.02478 (12)
F30.85689 (7)0.60562 (5)1.18096 (6)0.03051 (13)
N10.84154 (7)0.64304 (5)0.91602 (7)0.01799 (11)
C10.59745 (8)0.65594 (6)0.83617 (9)0.01870 (13)
H1A0.58730.66950.74290.022*
C20.48485 (9)0.65290 (6)0.86995 (10)0.02241 (15)
H2A0.40070.66430.79960.027*
C30.49921 (10)0.63283 (6)1.00871 (11)0.02434 (16)
C40.62453 (11)0.61733 (6)1.11567 (10)0.02539 (17)
H4A0.63470.60511.20930.030*
C50.73310 (9)0.62070 (6)1.07837 (9)0.02114 (14)
C60.72486 (8)0.63897 (5)0.93977 (8)0.01658 (12)
C70.84187 (7)0.64023 (5)0.77318 (8)0.01602 (12)
H7A0.79000.69490.71990.019*
C80.78026 (7)0.55017 (5)0.68918 (7)0.01418 (11)
C90.69022 (8)0.55353 (5)0.54747 (8)0.01668 (12)
C100.63233 (8)0.47417 (6)0.46594 (8)0.01959 (13)
H10A0.57210.48060.37170.024*
C110.66630 (9)0.38468 (6)0.52828 (9)0.02012 (14)
H11A0.62850.33030.47540.024*
C120.75652 (8)0.37582 (5)0.66927 (9)0.01879 (13)
H12A0.78010.31610.71170.023*
C130.81007 (7)0.45824 (5)0.74445 (8)0.01578 (12)
C140.98669 (8)0.65337 (6)0.78678 (9)0.02065 (14)
H14A1.02320.71070.84160.025*
H14B1.03960.59960.83890.025*
C150.99758 (9)0.66087 (6)0.64501 (10)0.02264 (15)
H15A0.95010.70930.58360.027*
C161.06994 (12)0.60355 (8)0.60087 (13)0.0329 (2)
H1N10.9099 (16)0.6141 (10)0.9828 (17)0.033 (4)*
H16B1.1209 (16)0.5526 (12)0.6600 (17)0.041 (4)*
H16A1.0756 (18)0.6098 (12)0.513 (2)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04381 (15)0.02600 (11)0.05793 (18)0.00690 (9)0.04060 (14)0.00647 (10)
F10.0223 (2)0.0231 (2)0.0163 (2)0.00354 (17)0.00191 (17)0.00387 (17)
F20.0323 (3)0.0181 (2)0.0175 (2)0.00117 (18)0.0027 (2)0.00436 (17)
F30.0343 (3)0.0376 (3)0.0167 (2)0.0065 (2)0.0068 (2)0.0050 (2)
N10.0171 (3)0.0222 (3)0.0138 (2)0.0005 (2)0.0051 (2)0.0018 (2)
C10.0189 (3)0.0205 (3)0.0177 (3)0.0013 (2)0.0083 (2)0.0033 (2)
C20.0216 (4)0.0214 (3)0.0271 (4)0.0026 (3)0.0127 (3)0.0062 (3)
C30.0312 (4)0.0177 (3)0.0338 (4)0.0045 (3)0.0233 (4)0.0050 (3)
C40.0398 (5)0.0197 (3)0.0243 (4)0.0011 (3)0.0208 (4)0.0002 (3)
C50.0286 (4)0.0187 (3)0.0172 (3)0.0009 (3)0.0101 (3)0.0003 (2)
C60.0199 (3)0.0149 (3)0.0159 (3)0.0008 (2)0.0080 (2)0.0023 (2)
C70.0162 (3)0.0165 (3)0.0151 (3)0.0012 (2)0.0059 (2)0.0011 (2)
C80.0144 (3)0.0153 (3)0.0132 (3)0.0001 (2)0.0057 (2)0.0001 (2)
C90.0193 (3)0.0159 (3)0.0141 (3)0.0004 (2)0.0057 (2)0.0012 (2)
C100.0214 (3)0.0205 (3)0.0148 (3)0.0019 (2)0.0049 (2)0.0024 (2)
C110.0224 (3)0.0178 (3)0.0206 (3)0.0028 (2)0.0089 (3)0.0038 (2)
C120.0209 (3)0.0155 (3)0.0213 (3)0.0006 (2)0.0096 (3)0.0007 (2)
C130.0148 (3)0.0177 (3)0.0146 (3)0.0016 (2)0.0054 (2)0.0019 (2)
C140.0166 (3)0.0239 (3)0.0214 (3)0.0038 (2)0.0075 (3)0.0009 (3)
C150.0211 (3)0.0241 (3)0.0254 (4)0.0005 (3)0.0120 (3)0.0054 (3)
C160.0365 (5)0.0360 (5)0.0357 (5)0.0056 (4)0.0245 (4)0.0063 (4)
Geometric parameters (Å, º) top
Cl1—C31.7398 (9)C7—H7A0.9800
F1—C131.3618 (9)C8—C91.3910 (10)
F2—C91.3550 (9)C8—C131.3915 (10)
F3—C51.3608 (11)C9—C101.3826 (11)
N1—C61.3851 (11)C10—C111.3879 (11)
N1—C71.4539 (10)C10—H10A0.9300
N1—H1N10.886 (16)C11—C121.3907 (12)
C1—C61.3964 (11)C11—H11A0.9300
C1—C21.3983 (12)C12—C131.3816 (11)
C1—H1A0.9300C12—H12A0.9300
C2—C31.3857 (14)C14—C151.4953 (12)
C2—H2A0.9300C14—H14A0.9700
C3—C41.3904 (15)C14—H14B0.9700
C4—C51.3773 (13)C15—C161.3208 (14)
C4—H4A0.9300C15—H15A0.9300
C5—C61.3999 (11)C16—H16B0.958 (17)
C7—C81.5242 (10)C16—H16A0.924 (19)
C7—C141.5406 (11)
C6—N1—C7122.26 (7)C13—C8—C7123.88 (6)
C6—N1—H1N1113.7 (10)F2—C9—C10117.74 (7)
C7—N1—H1N1115.1 (10)F2—C9—C8117.83 (6)
C6—C1—C2121.26 (8)C10—C9—C8124.42 (7)
C6—C1—H1A119.4C9—C10—C11118.34 (7)
C2—C1—H1A119.4C9—C10—H10A120.8
C3—C2—C1119.70 (9)C11—C10—H10A120.8
C3—C2—H2A120.2C10—C11—C12120.40 (7)
C1—C2—H2A120.2C10—C11—H11A119.8
C2—C3—C4120.87 (8)C12—C11—H11A119.8
C2—C3—Cl1120.00 (8)C13—C12—C11118.10 (7)
C4—C3—Cl1119.13 (7)C13—C12—H12A120.9
C5—C4—C3117.80 (8)C11—C12—H12A120.9
C5—C4—H4A121.1F1—C13—C12117.66 (7)
C3—C4—H4A121.1F1—C13—C8117.69 (7)
F3—C5—C4118.99 (8)C12—C13—C8124.64 (7)
F3—C5—C6116.99 (8)C15—C14—C7112.74 (7)
C4—C5—C6124.01 (8)C15—C14—H14A109.0
N1—C6—C1124.85 (7)C7—C14—H14A109.0
N1—C6—C5118.75 (7)C15—C14—H14B109.0
C1—C6—C5116.34 (8)C7—C14—H14B109.0
N1—C7—C8114.16 (6)H14A—C14—H14B107.8
N1—C7—C14108.04 (6)C16—C15—C14124.58 (9)
C8—C7—C14111.13 (6)C16—C15—H15A117.7
N1—C7—H7A107.8C14—C15—H15A117.7
C8—C7—H7A107.8C15—C16—H16B121.1 (10)
C14—C7—H7A107.8C15—C16—H16A123.1 (11)
C9—C8—C13114.10 (6)H16B—C16—H16A115.8 (14)
C9—C8—C7122.01 (6)
C6—C1—C2—C30.07 (12)N1—C7—C8—C1347.16 (10)
C1—C2—C3—C41.19 (12)C14—C7—C8—C1375.34 (9)
C1—C2—C3—Cl1178.34 (6)C13—C8—C9—F2179.74 (7)
C2—C3—C4—C51.30 (12)C7—C8—C9—F21.57 (11)
Cl1—C3—C4—C5178.24 (6)C13—C8—C9—C100.69 (11)
C3—C4—C5—F3179.88 (7)C7—C8—C9—C10179.38 (7)
C3—C4—C5—C60.17 (13)F2—C9—C10—C11179.51 (8)
C7—N1—C6—C116.99 (11)C8—C9—C10—C110.46 (13)
C7—N1—C6—C5165.95 (7)C9—C10—C11—C120.06 (13)
C2—C1—C6—N1178.25 (7)C10—C11—C12—C130.28 (12)
C2—C1—C6—C51.12 (11)C11—C12—C13—F1179.36 (7)
F3—C5—C6—N11.62 (11)C11—C12—C13—C80.01 (12)
C4—C5—C6—N1178.32 (8)C9—C8—C13—F1179.82 (6)
F3—C5—C6—C1178.93 (7)C7—C8—C13—F11.51 (11)
C4—C5—C6—C11.02 (12)C9—C8—C13—C120.44 (11)
C6—N1—C7—C859.79 (9)C7—C8—C13—C12179.11 (7)
C6—N1—C7—C14176.04 (7)N1—C7—C14—C15174.60 (7)
N1—C7—C8—C9134.28 (7)C8—C7—C14—C1559.43 (9)
C14—C7—C8—C9103.22 (8)C7—C14—C15—C16122.17 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···F10.886 (17)2.510 (14)2.8354 (9)102.4 (11)
N1—H1N1···F30.886 (17)2.306 (17)2.6839 (9)105.7 (14)
N1—H1N1···F1i0.886 (17)2.194 (17)3.0639 (9)167.1 (16)
C7—H7A···F20.982.382.8330 (10)107
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H13ClF3N
Mr311.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.8980 (1), 14.0073 (2), 10.1651 (1)
β (°) 113.018 (1)
V3)1428.17 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.50 × 0.39 × 0.27
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.868, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
32850, 7434, 6099
Rint0.025
(sin θ/λ)max1)0.856
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.04
No. of reflections7434
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.86

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···F10.886 (17)2.510 (14)2.8354 (9)102.4 (11)
N1—H1N1···F30.886 (17)2.306 (17)2.6839 (9)105.7 (14)
N1—H1N1···F1i0.886 (17)2.194 (17)3.0639 (9)167.1 (16)
C7—H7A···F20.982.382.8330 (10)107
Symmetry code: (i) x+2, y+1, z+2.
 

Footnotes

Thomson Reuters Researcher ID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters Researcher ID: A-5085-2009.

Acknowledgements

AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Limited, Bangalore, India, for allocation of research resources. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEdwards, N., Macrichie, J. A. & Parsons, P. J. (1998). Tetrahedron Lett. 39, 3605–3608.  Web of Science CrossRef CAS Google Scholar
First citationRobert, B. (1998). Chem. Rev. 98, 1407–1438.  PubMed Google Scholar
First citationSabine, L. & Horst, K. (1991). J. Org. Chem. 56, 5883–5889.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J., Soleihac, J. M., Schimidt, C., Peyroux, J., Roques, B. P. & Fornie, Z. M. (1989). J. Med. Chem. 32, 1497–1503.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1027-o1028
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds