organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1119-o1120

(E)-N′-(4-Chloro­benzyl­­idene)-p-toluene­sulfonohydrazide 0.15-hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 14 April 2009; accepted 18 April 2009; online 25 April 2009)

The asymmetric unit of the title compound, C14H13ClN2O2S·0.15H2O, a novel sulfonamide derivative, comprises two crystallographically independent mol­ecules (A and B) and a water mol­ecule of crystallization, which is partially occupied. One of the mol­ecules (B) is disordered over two positions (B and C) with refined site occupancies of 0.605 (10) and 0.395 (10). The dihedral angles between the two benzene rings in mol­ecules A, B and C are 67.8 (3), 74.6 (5) and 84.96 (11)°, respectively. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the components of the asymmetric unit. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distances = 3.4518 (10)–3.5859 (10) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures and applications, see, for example: Kia et al. (2008a[Kia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341.],b[Kia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424.]); Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]); Tabatabaee et al. (2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]); Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]); Tierney et al. (2006[Tierney, L. M., McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1-50. New York: McGraw-Hill Medical.]); Krygowski et al. (1998[Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289-12292.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related literature on bioactivity, see: Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN2O2S·0.15H2O

  • Mr = 311.61

  • Triclinic, [P \overline 1]

  • a = 7.9408 (2) Å

  • b = 11.0592 (2) Å

  • c = 17.7759 (4) Å

  • α = 77.521 (1)°

  • β = 83.415 (1)°

  • γ = 70.313 (1)°

  • V = 1433.60 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 100 K

  • 0.58 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.795, Tmax = 0.980

  • 24411 measured reflections

  • 8309 independent reflections

  • 6194 reflections with I > 2˘I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.104

  • S = 1.04

  • 8309 reflections

  • 375 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O1Bi 0.81 2.20 3.003 (4) 171
C10A—H10A⋯O2Aii 0.95 2.42 3.235 (3) 144
C12B—H12B⋯O1Aii 0.95 2.48 3.233 (6) 137
C9B—H9BA⋯O1Biii 0.95 2.55 3.369 (9) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations because of its efficacy and low cost (Krygowski et al., 1998). Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). Because of the above impotrtant features, we report the crystal structure of the title compound (I).

The title compound, (Fig. I), is a novel sulfonamide derivative. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related structures (Kia et al. 2008a,b; Mehrabi et al., 2008; Ali et al. 2007). The asymmetric unit of the title compound comprises two crystallographically independent molecules and a water molecule of crystallization which is partially occupied. One of the molecules of the title compound is disordered over two positions with a refined site-occupancy ratio of 0.605 (10)/0.395 (10). Intermolecular N—H···O and C—H···O hydrogen bonds link the neighbouring molecules together (Table 1). The dihedral angles between the two benzene rings in molecules A, B and C are 67.8 (3), 74.6 (5) and 84.96 (11)°, respectively. The crystal structure is further stabilized by intermolecular π-π interactions [Cg1···Cg 2iv = 3.749 (3) Å, (iv) -1 + x, -1 + y, z; Cg2···Cg3v = 3.805 (5) Å, (v) 1 + x, 1 + y, z; Cg1, Cg2 and Cg3 are the centroids of the C1B–C6B, C1A–C6A, and C1C–C6C benzene rings].

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and applications, see, for example: Kia et al. (2008a,b); Mehrabi et al. (2008); Tabatabaee et al. (2007); Ali et al. (2007); Tierney et al. (2006); Krygowski et al. (1998). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For related literature, see: Kayser et al. (2004).

Experimental top

p-Tosylhydrazine (2 mmol) was added to a 50 ml refluxing ethanolic solution of 4-chlorobenzaldehyde (2 mmol). The mixture was stirred for 2 h. After cooling, the colorless crystalline solid was isolated by filtration, washed with cold ethanol, and re-crystallized from ethanol.

Refinement top

The N-bound H atoms were located from the difference Fourier map and constrained to refine with the carrier atom with Uiso(H) = 1.2 Ueq(N). The rest of the hydrogen atoms were positioned geometrically and refined as riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups. For the disordered molecule, only the S and Cl atoms were refined anisotropically. Initially rigid, similarity and simulation restraints were applied. After steady state has been reached, these restraints were removed for the final refinement. There is no restraints used in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Open bonds indicate the minor component.
(E)-N'-(4-Chlorobenzylidene)-p-toluenesulfonohydrazide 0.15-hydrate top
Crystal data top
C14H13ClN2O2S·0.15H2OZ = 4
Mr = 311.61F(000) = 646
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9408 (2) ÅCell parameters from 6610 reflections
b = 11.0592 (2) Åθ = 2.5–31.3°
c = 17.7759 (4) ŵ = 0.42 mm1
α = 77.521 (1)°T = 100 K
β = 83.415 (1)°Needle, colourless
γ = 70.313 (1)°0.58 × 0.13 × 0.05 mm
V = 1433.60 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8309 independent reflections
Radiation source: fine-focus sealed tube6194 reflections with I > 2˘I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.795, Tmax = 0.980k = 1515
24411 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0215P)2 + 1.6504P]
where P = (Fo2 + 2Fc2)/3
8309 reflections(Δ/σ)max < 0.001
375 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C14H13ClN2O2S·0.15H2Oγ = 70.313 (1)°
Mr = 311.61V = 1433.60 (5) Å3
Triclinic, P1Z = 4
a = 7.9408 (2) ÅMo Kα radiation
b = 11.0592 (2) ŵ = 0.42 mm1
c = 17.7759 (4) ÅT = 100 K
α = 77.521 (1)°0.58 × 0.13 × 0.05 mm
β = 83.415 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6194 reflections with I > 2˘I)
Tmin = 0.795, Tmax = 0.980Rint = 0.037
24411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
8309 reflectionsΔρmin = 0.50 e Å3
375 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.03125 (9)0.28061 (6)0.03561 (3)0.03328 (14)
S1A0.04954 (7)0.36566 (5)0.28980 (3)0.01910 (11)
O1A0.0364 (2)0.40061 (15)0.36136 (8)0.0239 (3)
O2A0.20040 (19)0.43517 (14)0.24334 (9)0.0231 (3)
N1A0.0551 (2)0.15287 (17)0.25433 (10)0.0217 (4)
N2A0.0455 (2)0.21180 (17)0.31520 (10)0.0224 (4)
H2NA0.02440.17020.34880.027*
C1A0.0749 (3)0.1822 (2)0.22419 (13)0.0247 (5)
H1AA0.13410.22500.27080.030*
C2A0.0692 (3)0.2551 (2)0.17103 (13)0.0269 (5)
H2AA0.12510.34730.18050.032*
C3A0.0191 (3)0.1918 (2)0.10381 (12)0.0232 (4)
C4A0.1012 (3)0.0572 (2)0.08878 (12)0.0245 (5)
H4AA0.16200.01510.04240.029*
C5A0.0933 (3)0.0146 (2)0.14200 (12)0.0245 (5)
H5AA0.14850.10690.13200.029*
C6A0.0049 (3)0.0468 (2)0.21049 (12)0.0199 (4)
C7A0.0052 (3)0.0281 (2)0.26765 (12)0.0212 (4)
H7AA0.05770.01710.31550.025*
C8A0.1444 (3)0.36812 (19)0.23169 (11)0.0176 (4)
C9A0.3007 (3)0.3508 (2)0.26715 (12)0.0202 (4)
H9AA0.30350.33440.32180.024*
C10A0.4523 (3)0.3578 (2)0.22155 (12)0.0213 (4)
H10A0.55910.34610.24550.026*
C11A0.4509 (3)0.38171 (19)0.14111 (12)0.0198 (4)
C12A0.2935 (3)0.3947 (2)0.10728 (12)0.0215 (4)
H12A0.29130.40810.05270.026*
C13A0.1408 (3)0.3885 (2)0.15204 (12)0.0202 (4)
H13A0.03450.39810.12840.024*
C14A0.6143 (3)0.3962 (2)0.09342 (12)0.0252 (5)
H14A0.72180.34180.12140.038*
H14B0.60950.48800.08340.038*
H14C0.61820.36830.04440.038*
Cl1B0.4426 (5)0.7959 (3)0.04028 (16)0.0210 (7)0.605 (10)
S1B0.7628 (6)0.8594 (5)0.5026 (3)0.0168 (5)0.605 (10)
O1B0.7828 (5)0.9112 (4)0.5594 (2)0.0267 (11)*0.605 (10)
O2B0.6477 (4)0.7813 (4)0.52604 (16)0.0226 (8)*0.605 (10)
N1B0.6638 (5)0.9182 (4)0.36594 (18)0.0165 (8)*0.605 (10)
N2B0.6954 (5)0.9726 (3)0.42438 (17)0.0156 (8)*0.605 (10)
H10.62901.03390.43350.019*0.605 (10)
C1B0.6088 (7)0.8115 (5)0.2437 (3)0.0207 (13)*0.605 (10)
H1BA0.67810.75240.28470.025*0.605 (10)
C2B0.5833 (9)0.7648 (7)0.1792 (4)0.0226 (17)*0.605 (10)
H2BA0.63570.67520.17570.027*0.605 (10)
C3B0.4768 (13)0.8562 (9)0.1195 (5)0.023 (3)*0.605 (10)
C4B0.3999 (8)0.9877 (6)0.1263 (3)0.0179 (15)*0.605 (10)
H4BA0.32821.04890.08680.021*0.605 (10)
C5B0.4286 (10)1.0275 (7)0.1902 (4)0.0168 (17)*0.605 (10)
H5BA0.37361.11660.19430.020*0.605 (10)
C6B0.5323 (8)0.9447 (6)0.2476 (3)0.0161 (14)*0.605 (10)
C7B0.5643 (7)0.9940 (5)0.3126 (3)0.0171 (12)*0.605 (10)
H7BA0.50991.08400.31500.021*0.605 (10)
C8B0.9725 (11)0.7669 (7)0.4691 (4)0.018 (2)*0.605 (10)
C9B1.1215 (10)0.8081 (8)0.4638 (4)0.024 (2)*0.605 (10)
H9BA1.10450.89260.47370.029*0.605 (10)
C10B1.2837 (10)0.7368 (8)0.4460 (4)0.0206 (19)*0.605 (10)
H10B1.38400.76270.45080.025*0.605 (10)
C11B1.3073 (8)0.6155 (6)0.4185 (3)0.0176 (14)*0.605 (10)
C12B1.1562 (8)0.5784 (5)0.4180 (3)0.0178 (13)*0.605 (10)
H12B1.16790.50080.40020.021*0.605 (10)
C13B0.9882 (8)0.6530 (5)0.4434 (3)0.0171 (13)*0.605 (10)
H13B0.88620.62670.44310.021*0.605 (10)
C14B1.4892 (8)0.5349 (6)0.3909 (3)0.0273 (14)*0.605 (10)
H14D1.49930.44210.40370.041*0.605 (10)
H14E1.58240.54920.41620.041*0.605 (10)
H14F1.50390.56130.33490.041*0.605 (10)
Cl1C0.4463 (11)0.7958 (8)0.0393 (4)0.051 (2)0.395 (10)
S1C0.7706 (11)0.8308 (8)0.5037 (5)0.0256 (13)0.395 (10)
O1C0.7853 (7)0.9379 (6)0.5554 (3)0.0141 (12)*0.395 (10)
O2C0.6787 (7)0.7358 (7)0.5268 (3)0.0280 (13)*0.395 (10)
N1C0.6343 (8)0.8860 (7)0.3737 (3)0.0255 (14)*0.395 (10)
N2C0.6538 (9)0.9402 (7)0.4344 (3)0.0313 (15)*0.395 (10)
H20.62851.03430.43350.038*0.395 (10)
C1C0.5969 (12)0.7927 (8)0.2403 (5)0.022 (2)*0.395 (10)
H1CA0.66450.72950.28030.027*0.395 (10)
C2C0.5644 (14)0.7541 (11)0.1793 (6)0.025 (3)*0.395 (10)
H2CA0.60370.66370.17700.030*0.395 (10)
C3C0.4761 (19)0.8428 (13)0.1213 (8)0.019 (4)*0.395 (10)
C4C0.4100 (13)0.9730 (9)0.1186 (5)0.020 (3)*0.395 (10)
H4CA0.34681.03080.07570.024*0.395 (10)
C5C0.4388 (17)1.0197 (13)0.1822 (7)0.028 (4)*0.395 (10)
H5CA0.39781.11050.18330.033*0.395 (10)
C6C0.5347 (13)0.9227 (9)0.2467 (5)0.021 (2)*0.395 (10)
C7C0.5617 (12)0.9691 (9)0.3144 (5)0.025 (2)*0.395 (10)
H7CA0.52561.06020.31430.030*0.395 (10)
C8C0.9811 (16)0.7516 (11)0.4672 (7)0.017 (3)*0.395 (10)
C9C1.1153 (13)0.8047 (10)0.4739 (6)0.013 (2)*0.395 (10)
H9CA1.09680.87590.49920.016*0.395 (10)
C10C1.2924 (17)0.7361 (12)0.4364 (6)0.023 (3)*0.395 (10)
H10C1.38290.77650.42880.028*0.395 (10)
C11C1.3283 (12)0.6282 (9)0.4145 (5)0.021 (2)*0.395 (10)
C12C1.1917 (13)0.5762 (10)0.4146 (5)0.030 (3)*0.395 (10)
H12C1.21860.49640.39680.036*0.395 (10)
C13C1.0183 (13)0.6363 (9)0.4394 (5)0.024 (2)*0.395 (10)
H13C0.92640.60000.43760.029*0.395 (10)
C14C1.5123 (12)0.5534 (9)0.3901 (5)0.032 (2)*0.395 (10)
H14G1.59420.60140.39310.047*0.395 (10)
H14H1.51330.54180.33690.047*0.395 (10)
H14I1.55090.46750.42420.047*0.395 (10)
O1W0.6383 (7)0.1913 (5)0.3920 (3)0.0265 (11)0.30
H1W10.54250.23760.41210.040*0.30
H2W10.69930.24110.37170.040*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0387 (3)0.0291 (3)0.0325 (3)0.0048 (3)0.0059 (3)0.0144 (2)
S1A0.0180 (2)0.0190 (2)0.0211 (2)0.0045 (2)0.00232 (19)0.00677 (19)
O1A0.0240 (8)0.0278 (8)0.0226 (7)0.0083 (7)0.0004 (6)0.0112 (6)
O2A0.0178 (7)0.0228 (8)0.0283 (8)0.0039 (6)0.0045 (6)0.0060 (6)
N1A0.0239 (9)0.0222 (9)0.0209 (8)0.0090 (8)0.0017 (7)0.0054 (7)
N2A0.0275 (10)0.0220 (9)0.0185 (8)0.0080 (8)0.0054 (7)0.0033 (7)
C1A0.0266 (11)0.0213 (11)0.0246 (11)0.0063 (9)0.0071 (9)0.0000 (8)
C2A0.0308 (12)0.0166 (10)0.0314 (12)0.0035 (9)0.0071 (10)0.0042 (9)
C3A0.0233 (11)0.0229 (11)0.0252 (10)0.0071 (9)0.0007 (9)0.0089 (9)
C4A0.0243 (11)0.0229 (11)0.0231 (10)0.0030 (9)0.0062 (9)0.0025 (8)
C5A0.0254 (11)0.0177 (10)0.0273 (11)0.0024 (9)0.0058 (9)0.0029 (8)
C6A0.0204 (10)0.0199 (10)0.0203 (10)0.0088 (8)0.0005 (8)0.0030 (8)
C7A0.0208 (10)0.0223 (10)0.0210 (10)0.0079 (9)0.0038 (8)0.0022 (8)
C8A0.0168 (9)0.0132 (9)0.0219 (9)0.0026 (8)0.0018 (8)0.0050 (7)
C9A0.0213 (10)0.0211 (10)0.0189 (9)0.0055 (8)0.0040 (8)0.0055 (8)
C10A0.0184 (10)0.0235 (10)0.0235 (10)0.0061 (9)0.0056 (8)0.0060 (8)
C11A0.0198 (10)0.0152 (9)0.0240 (10)0.0039 (8)0.0017 (8)0.0054 (8)
C12A0.0222 (11)0.0212 (10)0.0190 (10)0.0036 (9)0.0040 (8)0.0036 (8)
C13A0.0187 (10)0.0191 (10)0.0221 (10)0.0029 (8)0.0062 (8)0.0050 (8)
C14A0.0231 (11)0.0280 (11)0.0248 (11)0.0087 (9)0.0004 (9)0.0052 (9)
Cl1B0.0247 (16)0.0205 (15)0.0174 (12)0.0042 (13)0.0037 (11)0.0063 (10)
S1B0.0124 (7)0.0205 (16)0.0172 (6)0.0047 (9)0.0004 (5)0.0040 (9)
Cl1C0.049 (4)0.046 (4)0.057 (4)0.006 (3)0.019 (3)0.013 (3)
S1C0.0256 (14)0.027 (3)0.0219 (12)0.0022 (17)0.0113 (9)0.0058 (18)
O1W0.024 (3)0.031 (3)0.027 (3)0.011 (2)0.001 (2)0.009 (2)
Geometric parameters (Å, º) top
Cl1A—C3A1.746 (2)C6B—C7B1.459 (7)
S1A—O2A1.4284 (15)C7B—H7BA0.9500
S1A—O1A1.4314 (14)C8B—C9B1.392 (11)
S1A—N2A1.6538 (18)C8B—C13B1.393 (9)
S1A—C8A1.758 (2)C9B—C10B1.308 (11)
N1A—C7A1.277 (3)C9B—H9BA0.9500
N1A—N2A1.399 (2)C10B—C11B1.473 (10)
N2A—H2NA0.8135C10B—H10B0.9500
C1A—C2A1.382 (3)C11B—C12B1.394 (8)
C1A—C6A1.393 (3)C11B—C14B1.510 (8)
C1A—H1AA0.9500C12B—C13B1.395 (7)
C2A—C3A1.382 (3)C12B—H12B0.9500
C2A—H2AA0.9500C13B—H13B0.9500
C3A—C4A1.387 (3)C14B—H14D0.9800
C4A—C5A1.379 (3)C14B—H14E0.9800
C4A—H4AA0.9500C14B—H14F0.9800
C5A—C6A1.398 (3)Cl1C—C3C1.714 (15)
C5A—H5AA0.9500S1C—O2C1.438 (9)
C6A—C7A1.467 (3)S1C—N2C1.644 (10)
C7A—H7AA0.9500S1C—O1C1.687 (11)
C8A—C13A1.387 (3)S1C—C8C1.729 (14)
C8A—C9A1.394 (3)N1C—C7C1.286 (10)
C9A—C10A1.387 (3)N1C—N2C1.389 (8)
C9A—H9AA0.9500N2C—H10.9839
C10A—C11A1.397 (3)N2C—H20.9876
C10A—H10A0.9500C1C—C2C1.327 (13)
C11A—C12A1.400 (3)C1C—C6C1.380 (12)
C11A—C14A1.502 (3)C1C—H1CA0.9500
C12A—C13A1.385 (3)C2C—C3C1.335 (17)
C12A—H12A0.9500C2C—H2CA0.9500
C13A—H13A0.9500C3C—C4C1.349 (16)
C14A—H14A0.9800C4C—C5C1.410 (14)
C14A—H14B0.9800C4C—H4CA0.9500
C14A—H14C0.9800C5C—C6C1.471 (15)
Cl1B—C3B1.765 (10)C5C—H5CA0.9500
S1B—O1B1.312 (7)C6C—C7C1.468 (12)
S1B—O2B1.430 (5)C7C—H7CA0.9500
S1B—N2B1.660 (6)C8C—C13C1.394 (14)
S1B—C8B1.750 (9)C8C—C9C1.405 (15)
N1B—C7B1.268 (6)C9C—C10C1.511 (16)
N1B—N2B1.391 (4)C9C—H9CA0.9500
N2B—H10.7419C10C—C11C1.266 (15)
N2B—H20.7467C10C—H10C0.9500
C1B—C6B1.406 (7)C11C—C12C1.388 (13)
C1B—C2B1.416 (8)C11C—C14C1.485 (13)
C1B—H1BA0.9500C12C—C13C1.380 (12)
C2B—C3B1.424 (11)C12C—H12C0.9500
C2B—H2BA0.9500C13C—H13C0.9500
C3B—C4B1.401 (11)C14C—H14G0.9800
C4B—C5B1.369 (9)C14C—H14H0.9800
C4B—H4BA0.9500C14C—H14I0.9800
C5B—C6B1.357 (9)O1W—H1W10.8500
C5B—H5BA0.9500O1W—H2W10.8500
O2A—S1A—O1A120.90 (9)C5B—C6B—C1B119.4 (5)
O2A—S1A—N2A107.50 (9)C5B—C6B—C7B120.1 (5)
O1A—S1A—N2A103.58 (9)C1B—C6B—C7B120.5 (5)
O2A—S1A—C8A107.70 (9)N1B—C7B—C6B120.8 (5)
O1A—S1A—C8A108.72 (9)N1B—C7B—H7BA119.6
N2A—S1A—C8A107.78 (9)C6B—C7B—H7BA119.6
C7A—N1A—N2A115.35 (17)C9B—C8B—C13B119.3 (7)
N1A—N2A—S1A115.08 (13)C9B—C8B—S1B121.4 (6)
N1A—N2A—H2NA118.9C13B—C8B—S1B119.1 (6)
S1A—N2A—H2NA112.4C10B—C9B—C8B123.5 (8)
C2A—C1A—C6A121.1 (2)C10B—C9B—H9BA118.2
C2A—C1A—H1AA119.5C8B—C9B—H9BA118.2
C6A—C1A—H1AA119.5C9B—C10B—C11B118.5 (7)
C1A—C2A—C3A118.9 (2)C9B—C10B—H10B120.8
C1A—C2A—H2AA120.6C11B—C10B—H10B120.8
C3A—C2A—H2AA120.6C12B—C11B—C10B117.9 (5)
C2A—C3A—C4A121.4 (2)C12B—C11B—C14B121.3 (5)
C2A—C3A—Cl1A120.30 (17)C10B—C11B—C14B120.9 (5)
C4A—C3A—Cl1A118.27 (16)C11B—C12B—C13B121.2 (5)
C5A—C4A—C3A119.1 (2)C11B—C12B—H12B119.4
C5A—C4A—H4AA120.4C13B—C12B—H12B119.4
C3A—C4A—H4AA120.4C8B—C13B—C12B118.9 (5)
C4A—C5A—C6A120.7 (2)C8B—C13B—H13B120.5
C4A—C5A—H5AA119.7C12B—C13B—H13B120.5
C6A—C5A—H5AA119.7O2C—S1C—N2C105.3 (6)
C1A—C6A—C5A118.80 (19)O2C—S1C—O1C127.0 (6)
C1A—C6A—C7A119.75 (18)N2C—S1C—O1C96.6 (5)
C5A—C6A—C7A121.45 (19)O2C—S1C—C8C107.3 (6)
N1A—C7A—C6A121.20 (19)N2C—S1C—C8C109.7 (6)
N1A—C7A—H7AA119.4O1C—S1C—C8C109.6 (6)
C6A—C7A—H7AA119.4C7C—N1C—N2C115.1 (6)
C13A—C8A—C9A120.8 (2)N1C—N2C—S1C112.8 (5)
C13A—C8A—S1A120.46 (16)N1C—N2C—H1125.9
C9A—C8A—S1A118.74 (15)S1C—N2C—H1119.7
C10A—C9A—C8A119.04 (18)N1C—N2C—H2125.9
C10A—C9A—H9AA120.5S1C—N2C—H2119.8
C8A—C9A—H9AA120.5H1—N2C—H20.2
C9A—C10A—C11A121.31 (19)C2C—C1C—C6C121.4 (9)
C9A—C10A—H10A119.3C2C—C1C—H1CA119.3
C11A—C10A—H10A119.3C6C—C1C—H1CA119.3
C10A—C11A—C12A118.3 (2)C1C—C2C—C3C119.7 (11)
C10A—C11A—C14A119.89 (19)C1C—C2C—H2CA120.2
C12A—C11A—C14A121.82 (19)C3C—C2C—H2CA120.2
C13A—C12A—C11A121.07 (19)C2C—C3C—C4C125.8 (12)
C13A—C12A—H12A119.5C2C—C3C—Cl1C120.3 (10)
C11A—C12A—H12A119.5C4C—C3C—Cl1C113.9 (10)
C12A—C13A—C8A119.46 (19)C3C—C4C—C5C117.1 (10)
C12A—C13A—H13A120.3C3C—C4C—H4CA121.5
C8A—C13A—H13A120.3C5C—C4C—H4CA121.5
C11A—C14A—H14A109.5C4C—C5C—C6C117.7 (10)
C11A—C14A—H14B109.5C4C—C5C—H5CA121.2
H14A—C14A—H14B109.5C6C—C5C—H5CA121.2
C11A—C14A—H14C109.5C1C—C6C—C7C123.2 (8)
H14A—C14A—H14C109.5C1C—C6C—C5C118.3 (8)
H14B—C14A—H14C109.5C7C—C6C—C5C118.5 (8)
O1B—S1B—O2B111.1 (4)N1C—C7C—C6C119.8 (8)
O1B—S1B—N2B111.4 (4)N1C—C7C—H7CA120.1
O2B—S1B—N2B112.5 (4)C6C—C7C—H7CA120.1
O1B—S1B—C8B109.7 (4)C13C—C8C—C9C122.2 (10)
O2B—S1B—C8B111.0 (4)C13C—C8C—S1C122.1 (9)
N2B—S1B—C8B100.7 (4)C9C—C8C—S1C115.5 (8)
C7B—N1B—N2B117.9 (4)C8C—C9C—C10C112.5 (10)
N1B—N2B—S1B111.1 (3)C8C—C9C—H9CA123.7
N1B—N2B—H1119.5C10C—C9C—H9CA123.7
S1B—N2B—H1112.7C11C—C10C—C9C124.3 (11)
N1B—N2B—H2119.5C11C—C10C—H10C117.8
S1B—N2B—H2112.7C9C—C10C—H10C117.8
H1—N2B—H20.0C10C—C11C—C12C119.1 (10)
C6B—C1B—C2B120.3 (5)C10C—C11C—C14C122.4 (9)
C6B—C1B—H1BA119.8C12C—C11C—C14C118.5 (8)
C2B—C1B—H1BA119.8C13C—C12C—C11C122.4 (9)
C1B—C2B—C3B118.1 (6)C13C—C12C—H12C118.8
C1B—C2B—H2BA121.0C11C—C12C—H12C118.8
C3B—C2B—H2BA121.0C12C—C13C—C8C118.4 (9)
C4B—C3B—C2B119.8 (7)C12C—C13C—H13C120.8
C4B—C3B—Cl1B122.7 (7)C8C—C13C—H13C120.8
C2B—C3B—Cl1B117.5 (6)C11C—C14C—H14G109.5
C5B—C4B—C3B119.8 (6)C11C—C14C—H14H109.5
C5B—C4B—H4BA120.1H14G—C14C—H14H109.5
C3B—C4B—H4BA120.1C11C—C14C—H14I109.5
C6B—C5B—C4B122.6 (6)H14G—C14C—H14I109.5
C6B—C5B—H5BA118.7H14H—C14C—H14I109.5
C4B—C5B—H5BA118.7H1W1—O1W—H2W1107.7
C7A—N1A—N2A—S1A157.97 (16)O1B—S1B—C8B—C9B38.3 (8)
O2A—S1A—N2A—N1A51.52 (17)O2B—S1B—C8B—C9B161.5 (6)
O1A—S1A—N2A—N1A179.42 (15)N2B—S1B—C8B—C9B79.2 (7)
C8A—S1A—N2A—N1A64.33 (17)O1B—S1B—C8B—C13B145.1 (6)
C6A—C1A—C2A—C3A0.7 (4)O2B—S1B—C8B—C13B21.9 (8)
C1A—C2A—C3A—C4A0.2 (4)N2B—S1B—C8B—C13B97.4 (6)
C1A—C2A—C3A—Cl1A179.37 (18)C13B—C8B—C9B—C10B9.9 (11)
C2A—C3A—C4A—C5A0.4 (4)S1B—C8B—C9B—C10B173.4 (6)
Cl1A—C3A—C4A—C5A179.92 (18)C8B—C9B—C10B—C11B9.7 (11)
C3A—C4A—C5A—C6A0.4 (3)C9B—C10B—C11B—C12B4.4 (9)
C2A—C1A—C6A—C5A0.7 (3)C9B—C10B—C11B—C14B174.9 (6)
C2A—C1A—C6A—C7A179.3 (2)C10B—C11B—C12B—C13B0.5 (8)
C4A—C5A—C6A—C1A0.2 (3)C14B—C11B—C12B—C13B179.8 (5)
C4A—C5A—C6A—C7A179.8 (2)C9B—C8B—C13B—C12B4.5 (9)
N2A—N1A—C7A—C6A176.81 (18)S1B—C8B—C13B—C12B178.8 (5)
C1A—C6A—C7A—N1A174.9 (2)C11B—C12B—C13B—C8B0.3 (8)
C5A—C6A—C7A—N1A5.1 (3)C7C—N1C—N2C—S1C172.5 (7)
O2A—S1A—C8A—C13A22.24 (19)O2C—S1C—N2C—N1C56.5 (7)
O1A—S1A—C8A—C13A154.88 (16)O1C—S1C—N2C—N1C172.3 (5)
N2A—S1A—C8A—C13A93.47 (17)C8C—S1C—N2C—N1C58.8 (8)
O2A—S1A—C8A—C9A157.01 (15)C6C—C1C—C2C—C3C2.8 (16)
O1A—S1A—C8A—C9A24.38 (19)C1C—C2C—C3C—C4C2 (2)
N2A—S1A—C8A—C9A87.28 (17)C1C—C2C—C3C—Cl1C175.5 (9)
C13A—C8A—C9A—C10A1.8 (3)C2C—C3C—C4C—C5C0.9 (19)
S1A—C8A—C9A—C10A177.46 (16)Cl1C—C3C—C4C—C5C176.4 (9)
C8A—C9A—C10A—C11A0.1 (3)C3C—C4C—C5C—C6C1.3 (16)
C9A—C10A—C11A—C12A1.9 (3)C2C—C1C—C6C—C7C177.6 (9)
C9A—C10A—C11A—C14A176.6 (2)C2C—C1C—C6C—C5C3.3 (14)
C10A—C11A—C12A—C13A2.1 (3)C4C—C5C—C6C—C1C2.5 (15)
C14A—C11A—C12A—C13A176.3 (2)C4C—C5C—C6C—C7C178.3 (9)
C11A—C12A—C13A—C8A0.5 (3)N2C—N1C—C7C—C6C179.9 (7)
C9A—C8A—C13A—C12A1.5 (3)C1C—C6C—C7C—N1C5.5 (14)
S1A—C8A—C13A—C12A177.69 (16)C5C—C6C—C7C—N1C175.4 (9)
C7B—N1B—N2B—S1B159.7 (4)O2C—S1C—C8C—C13C22.1 (12)
O1B—S1B—N2B—N1B176.3 (3)N2C—S1C—C8C—C13C91.8 (10)
O2B—S1B—N2B—N1B50.7 (4)O1C—S1C—C8C—C13C163.3 (9)
C8B—S1B—N2B—N1B67.5 (4)O2C—S1C—C8C—C9C152.4 (8)
C6B—C1B—C2B—C3B0.8 (9)N2C—S1C—C8C—C9C93.7 (10)
C1B—C2B—C3B—C4B0.5 (11)O1C—S1C—C8C—C9C11.2 (11)
C1B—C2B—C3B—Cl1B178.8 (5)C13C—C8C—C9C—C10C9.1 (15)
C2B—C3B—C4B—C5B0.4 (12)S1C—C8C—C9C—C10C176.4 (8)
Cl1B—C3B—C4B—C5B178.5 (6)C8C—C9C—C10C—C11C12.8 (15)
C3B—C4B—C5B—C6B1.2 (11)C9C—C10C—C11C—C12C9.3 (16)
C4B—C5B—C6B—C1B2.5 (10)C9C—C10C—C11C—C14C169.5 (9)
C4B—C5B—C6B—C7B177.3 (6)C10C—C11C—C12C—C13C1.6 (15)
C2B—C1B—C6B—C5B2.2 (9)C14C—C11C—C12C—C13C177.2 (9)
C2B—C1B—C6B—C7B177.5 (5)C11C—C12C—C13C—C8C1.7 (14)
N2B—N1B—C7B—C6B177.1 (4)C9C—C8C—C13C—C12C2.9 (15)
C5B—C6B—C7B—N1B178.6 (6)S1C—C8C—C13C—C12C177.1 (8)
C1B—C6B—C7B—N1B1.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1Bi0.812.203.003 (4)171
C10A—H10A···O2Aii0.952.423.235 (3)144
C12B—H12B···O1Aii0.952.483.233 (6)137
C9B—H9BA···O1Biii0.952.553.369 (9)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H13ClN2O2S·0.15H2O
Mr311.61
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9408 (2), 11.0592 (2), 17.7759 (4)
α, β, γ (°)77.521 (1), 83.415 (1), 70.313 (1)
V3)1433.60 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.58 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.795, 0.980
No. of measured, independent and
observed [I > 2˘I)] reflections
24411, 8309, 6194
Rint0.037
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.104, 1.04
No. of reflections8309
No. of parameters375
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.50

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1Bi0.81002.20003.003 (4)171.00
C10A—H10A···O2Aii0.95002.42003.235 (3)144.00
C12B—H12B···O1Aii0.95002.48003.233 (6)137.00
C9B—H9BA···O1Biii0.95002.55003.369 (9)145.00
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5471-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTierney, L. M., McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw-Hill Medical.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1119-o1120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds