metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(amino­meth­yl)pyridine-κ2N,N′]bis­­(thio­cyanato-κN)copper(II)

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 2 April 2009; accepted 9 April 2009; online 18 April 2009)

In the title complex, [Cu(NCS)2(C6H8N2)2], the CuII atom, lying on an inversion center, adopts a Jahn–Teller distorted octahedral CuN6 coordination geometry. The two bidentate 2-amino­methyl­pyridine ligands are coordinated in a trans fashion, while the two thio­cyanate ligands are at the axial positions and coordinate to the Cu atom in a bent mode with a C—N—Cu angle of 127.49 (10)°. Inter­molecular N—H⋯N and N—H⋯S hydrogen bonds link the copper complex mol­ecules into an infinite two-dimensional network.

Related literature

For six-coordinate trans-dithio­cyanato Cu(II) complexes similar to the title complex, see: Gary et al. (2004[Gary, J. B., Kautz, J. A., Klausmeyer, K. K. & Wong, C.-W. (2004). Acta Cryst. E60, m328-m329.]); Ferrer et al. (1992[Ferrer, S., Haasnoot, J. G., Reedijk, J., Muller, E., Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. & Foglia, C. (1992). J. Chem. Soc. Dalton Trans. pp. 3029-3034.]); Gorji et al. (2001[Gorji, A., Mahmoudkhani, A. H. M. & Amirnasr, M. (2001). Inorg. Chim. Acta, 315, 133-138.]); Kozlowski & Hodgson (1975[Kozlowski, D. L. & Hodgson, D. L. (1975). J. Chem. Soc. Dalton Trans. pp. 55-58.]); Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597-m1598.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C6H8N2)2]

  • Mr = 395.99

  • Monoclinic, P 21 /c

  • a = 9.1023 (4) Å

  • b = 9.1740 (4) Å

  • c = 9.6895 (4) Å

  • β = 91.872 (3)°

  • V = 808.69 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 150 K

  • 0.46 × 0.38 × 0.31 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.497, Tmax = 0.603

  • 11419 measured reflections

  • 2086 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.13

  • 2086 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3i 0.92 2.27 3.0717 (19) 145
N2—H2B⋯S1ii 0.92 2.60 3.4628 (13) 156
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tilte complex was readily obtained from the reaction between copper(II) acetate, 2-aminomethylpyridine, and sodium thiocyanate. The complex consists of two trans bidentate ligands and two trans thiocyanate ligands (Fig. 1). It exhibits an octahedron coordination geometry at the Cu atom which is located on the inversion center. The bent coordination of thiocyanate results in the C5—N1—Cu1 bond angle of 127.49 (10)°. The pyridine ring is twisted from the equatorial plane defined by the Cu and the four N atoms; the interplanar angle is 17.86 (8)°. Intermolecular H-bonds of the type N—H···N and N—H···S exist, linking the complex into a into a two-dimensional hydrogen bonded network (Table 1).

Six-coordinate trans-dithiocyanato Cu(II) complexes similar to the title complex have been reported in the literature (Gary et al., 2004; Ferrer et al., 1992; Gorji et al., 2001; Kozlowski & Hodgson, 1975; Li & Zhang, 2004).

Related literature top

For six-coordinate trans-dithiocyanato Cu(II) complexes similar to the title complex, see: Gary et al. (2004); Ferrer et al. (1992); Gorji et al. (2001); Kozlowski & Hodgson (1975); Li & Zhang (2004).

Experimental top

To a methanolic solution (10 ml) of Cu(O2CCH3)2.H2O (1.0 mmol, 0.199 g), a methanolic solution (10.0 ml) of 2-aminomethylpyridine (2.0 mmol, 0.207 ml) was added dropwise with stirring. Then to this mixture of solution, NaSCN (2.0 mmol, 0.162 g) in methanol (5.0 ml) was added and the mixture was stirred for 5 min. The solution was kept undisturbed. Blue crystals suitable for X-ray crystallography were obtained after one week by slow evaporation of the solvent.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.92, Caryl—H = 0.95, Cmethylene—H = 0.99 Å while Uiso(H) = 1.2Ueq(C or N) for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A packing diagram of the title compound along the a axis. Hyrogen bonds are shown as dashed lines.
Bis[2-(aminomethyl)pyridine-κ2N,N']bis(thiocyanato- κN)copper(II) top
Crystal data top
[Cu(NCS)2(C6H8N2)2]F(000) = 406
Mr = 395.99Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3360 reflections
a = 9.1023 (4) Åθ = 3.1–28.0°
b = 9.1740 (4) ŵ = 1.62 mm1
c = 9.6895 (4) ÅT = 150 K
β = 91.872 (3)°Plate, blue
V = 808.69 (6) Å30.46 × 0.38 × 0.31 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
2086 independent reflections
Radiation source: fine-focus sealed tube1776 reflections with I > 2σ
Graphite monochromatorRint = 0.031
ω scansθmax = 28.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.497, Tmax = 0.603k = 1212
11419 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.2097P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(NCS)2(C6H8N2)2]V = 808.69 (6) Å3
Mr = 395.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.1023 (4) ŵ = 1.62 mm1
b = 9.1740 (4) ÅT = 150 K
c = 9.6895 (4) Å0.46 × 0.38 × 0.31 mm
β = 91.872 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
2086 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1776 reflections with I > 2σ
Tmin = 0.497, Tmax = 0.603Rint = 0.031
11419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.13Δρmax = 0.35 e Å3
2086 reflectionsΔρmin = 0.40 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27555 (16)0.35413 (16)0.48964 (15)0.0151 (3)
C20.41671 (16)0.30420 (16)0.52349 (17)0.0187 (3)
H20.46070.23020.47010.022*
C30.49184 (16)0.36421 (17)0.63614 (17)0.0199 (3)
H30.58780.33110.66180.024*
C40.42557 (17)0.47314 (17)0.71109 (17)0.0190 (3)
H40.47590.51700.78780.023*
C50.28491 (17)0.51688 (16)0.67232 (16)0.0170 (3)
H50.23950.59170.72360.020*
C60.18680 (17)0.29582 (17)0.36793 (16)0.0188 (3)
H6A0.25130.28130.28880.023*
H6B0.14350.20050.39180.023*
C70.15576 (16)0.17946 (16)0.52438 (16)0.0175 (3)
Cu10.00000.50000.50000.01369 (8)
N10.20991 (13)0.45719 (14)0.56437 (13)0.0142 (2)
N20.06857 (13)0.39999 (14)0.32960 (13)0.0161 (3)
H2A0.00870.35130.28690.019*
H2B0.10300.46800.26880.019*
N30.08726 (15)0.26276 (15)0.58955 (15)0.0244 (3)
S10.25589 (5)0.06047 (5)0.43612 (4)0.02601 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (7)0.0142 (6)0.0154 (7)0.0005 (5)0.0020 (5)0.0008 (5)
C20.0166 (7)0.0171 (7)0.0225 (8)0.0036 (6)0.0032 (6)0.0011 (6)
C30.0140 (7)0.0215 (7)0.0243 (8)0.0029 (6)0.0003 (6)0.0069 (6)
C40.0167 (7)0.0224 (8)0.0177 (8)0.0027 (6)0.0030 (6)0.0016 (6)
C50.0164 (7)0.0187 (7)0.0159 (7)0.0008 (6)0.0001 (6)0.0009 (5)
C60.0187 (7)0.0201 (7)0.0176 (8)0.0052 (6)0.0015 (6)0.0049 (6)
C70.0168 (7)0.0183 (7)0.0175 (8)0.0037 (6)0.0027 (6)0.0057 (6)
Cu10.01194 (13)0.01631 (13)0.01273 (14)0.00240 (9)0.00107 (9)0.00347 (9)
N10.0130 (6)0.0152 (5)0.0143 (6)0.0009 (5)0.0004 (5)0.0000 (5)
N20.0154 (6)0.0190 (6)0.0140 (6)0.0017 (5)0.0006 (5)0.0019 (5)
N30.0261 (7)0.0213 (7)0.0255 (8)0.0016 (6)0.0033 (6)0.0040 (6)
S10.0235 (2)0.0293 (2)0.0251 (2)0.00253 (17)0.00159 (16)0.00652 (17)
Geometric parameters (Å, º) top
C1—N11.3430 (19)C6—N21.4775 (18)
C1—C21.393 (2)C6—H6A0.9900
C1—C61.506 (2)C6—H6B0.9900
C2—C31.383 (2)C7—N31.160 (2)
C2—H20.9500C7—S11.6440 (16)
C3—C41.385 (2)Cu1—N22.0062 (12)
C3—H30.9500Cu1—N2i2.0062 (12)
C4—C51.382 (2)Cu1—N12.0288 (12)
C4—H40.9500Cu1—N1i2.0288 (12)
C5—N11.3466 (19)N2—H2A0.9200
C5—H50.9500N2—H2B0.9200
N1—C1—C2121.85 (14)C1—C6—H6B109.8
N1—C1—C6115.83 (12)H6A—C6—H6B108.2
C2—C1—C6122.32 (13)N3—C7—S1178.26 (15)
C3—C2—C1118.90 (14)N2—Cu1—N2i180.0
C3—C2—H2120.5N2—Cu1—N181.33 (5)
C1—C2—H2120.5N2i—Cu1—N198.67 (5)
C2—C3—C4119.23 (14)N2—Cu1—N1i98.67 (5)
C2—C3—H3120.4N2i—Cu1—N1i81.33 (5)
C4—C3—H3120.4N1—Cu1—N1i180.0
C5—C4—C3118.84 (14)C1—N1—C5118.81 (13)
C5—C4—H4120.6C1—N1—Cu1113.68 (10)
C3—C4—H4120.6C5—N1—Cu1127.49 (10)
N1—C5—C4122.33 (14)C6—N2—Cu1109.43 (9)
N1—C5—H5118.8C6—N2—H2A109.8
C4—C5—H5118.8Cu1—N2—H2A109.8
N2—C6—C1109.56 (12)C6—N2—H2B109.8
N2—C6—H6A109.8Cu1—N2—H2B109.8
C1—C6—H6A109.8H2A—N2—H2B108.2
N2—C6—H6B109.8
N1—C1—C2—C30.9 (2)C6—C1—N1—Cu13.52 (16)
C6—C1—C2—C3179.38 (14)C4—C5—N1—C11.7 (2)
C1—C2—C3—C40.7 (2)C4—C5—N1—Cu1176.34 (11)
C2—C3—C4—C51.1 (2)N2—Cu1—N1—C117.99 (10)
C3—C4—C5—N10.1 (2)N2i—Cu1—N1—C1162.01 (10)
N1—C1—C6—N219.63 (18)N2—Cu1—N1—C5163.84 (13)
C2—C1—C6—N2160.67 (14)N2i—Cu1—N1—C516.16 (13)
C2—C1—N1—C52.2 (2)C1—C6—N2—Cu133.03 (14)
C6—C1—N1—C5178.14 (13)N1—Cu1—N2—C627.99 (10)
C2—C1—N1—Cu1176.18 (11)N1i—Cu1—N2—C6152.01 (10)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3ii0.922.273.0717 (19)145
N2—H2B···S1iii0.922.603.4628 (13)156
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C6H8N2)2]
Mr395.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.1023 (4), 9.1740 (4), 9.6895 (4)
β (°) 91.872 (3)
V3)808.69 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.46 × 0.38 × 0.31
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.497, 0.603
No. of measured, independent and
observed (I > 2σ) reflections
11419, 2086, 1776
Rint0.031
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.13
No. of reflections2086
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.922.273.0717 (19)145
N2—H2B···S1ii0.922.603.4628 (13)156
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the National Science Council of Taiwan for financial support of this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrer, S., Haasnoot, J. G., Reedijk, J., Muller, E., Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. & Foglia, C. (1992). J. Chem. Soc. Dalton Trans. pp. 3029–3034.  CSD CrossRef Web of Science Google Scholar
First citationGary, J. B., Kautz, J. A., Klausmeyer, K. K. & Wong, C.-W. (2004). Acta Cryst. E60, m328–m329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGorji, A., Mahmoudkhani, A. H. M. & Amirnasr, M. (2001). Inorg. Chim. Acta, 315, 133–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozlowski, D. L. & Hodgson, D. L. (1975). J. Chem. Soc. Dalton Trans. pp. 55–58.  CSD CrossRef Web of Science Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597–m1598.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds