organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1174

Ethyl 3-carb­­oxy-5-nitro­benzoate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: liuyaling158@163.com

(Received 9 April 2009; accepted 27 April 2009; online 30 April 2009)

In the title compound, C10H9NO6, the carb­oxy, ethoxy­carbonyl and nitro groups form dihedral angles of 3.8 (1), 4.5 (1) and 164.8 (1)°, respectively, with the mean plane of the benzene ring. In the crystal structure, mol­ecules lying about inversion centers are linked through O—H⋯O hydrogen bonds. C—H⋯O inter­actions are also present.

Related literature

The title compound is an important inter­mediate for the preparation of iodinated X-ray contrast media, such as iotalamic acid, ioxitalamic acid, and ioxilan, which are used clinically all over the world (Morin et al., 1987[Morin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol. 35, 1215-1220.]; Singh & Rathore, 1980[Singh, G. B. & Rathore, H. G. S. (1980). Indian Drug. Pharm. Ind. 15, 35-38.]; Stacul, 2001[Stacul, F. (2001). Eur. Radiol. 11, 690-697.]). For a related structure, see: Zou et al. (2009[Zou, P., Xie, M.-H., Luo, S.-N., Liu, Y.-L. & Shen, Y.-J. (2009). Acta Cryst. E65, o335.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO6

  • Mr = 239.18

  • Monoclinic, P 21 /n

  • a = 14.249 (3) Å

  • b = 4.6450 (9) Å

  • c = 16.536 (4) Å

  • β = 108.401 (3)°

  • V = 1038.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 93 K

  • 0.40 × 0.23 × 0.23 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: none

  • 6542 measured reflections

  • 2355 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.087

  • S = 0.99

  • 2355 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O6i 0.92 (3) 1.71 (3) 2.630 (2) 176.7 (17)
C6—H6⋯O2ii 0.95 2.35 3.280 (2) 165
C9—H9A⋯O6iii 0.98 2.56 3.354 (3) 138
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate for the preparation of iodinated X-ray contrast media, such as iotalamic acid, ioxitalamic acid, and ioxilan, which are used clinically all over the world (Morin et al., 1987; Singh et al., 1980; Stacul, 2001). We report here the crystal structure of the title compound.

The crystal data show that the bond lengths and angles in the title compound (Fig. 1) are within expected ranges and agree well with the corresponding molecular dimensions reported for a similar compound (Zou et al., 2009). The carboxylic acid group (O5/C10/O6) attached at C3 and the ester group (O1/C7/O2) attached at C1 are nearly coplanar with the benzene ring (C1—C6) (dihedral angles of 3.8 (1) and 4.5 (1)°, respectively), while the nitro group (O3/N1/O4) attached at C5 forms a dihedral angle of 164.8 (1) ° with the benzene ring. In the cyrstal structure, the molecules lying about inversion centers are linked through O—H···O hydrogen bonds (Table 1).

Related literature top

The title compound is an important intermediate for the preparation of iodinated X-ray contrast media, such as iotalamic acid, ioxitalamic acid, and ioxilan, which are used clinically all over the world (Morin et al., 1987; Singh & Rathore, 1980; Stacul, 2001). For a related structure, see: Zou et al. (2009).

Experimental top

5-Nitroisophthalic acid (2.1 g, 0.01 mol) was dissolved in 1.5 M ethanolic hydrochloric acid solution (7.5 ml) at 323 K. The mixture was stirred at 323 K for 6 hr. Then sodium chloride (1.8 g, 0.03 mol) in water (20 ml) was added. An oily liquid separated and crystallized on cooling. The precipitate was suction filtered and washed with water until neutral. The solid was suspended in sodium bicarbonate (1.0 g, 0.01 mol) in water (10 ml) and the undissolved diester was filtered off. The filtrate was acidified with 1 M hydrochloric acid to a pH of 4. The precipitate was filtered and washed with cold water. The crude product was purified by recrystallization from ethanol (yield: 41%). Single crystals were grown by slow evaporation of a ethanol/water(v/v 1:1) solution: colourless prismatic crystals were formed after several days.

Refinement top

All the H atoms could have been discerned in the difference electron density maps. With the exception of the hydrogen belonging to the hydroxyl group of the carboxyl the H atoms were situated into the idealized positions and refined in riding motion approximation. The hydroxyl hydrogen was refined freely. The used constraints: Caryl—H = 0.95 Å, Cmethyl—H = 0.98 Å and Cmethylene—H = 0.99 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Ethyl 3-carboxy-5-nitrobenzoate top
Crystal data top
C10H9NO6F(000) = 496
Mr = 239.18Dx = 1.530 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3010 reflections
a = 14.249 (3) Åθ = 3.0–27.5°
b = 4.6450 (9) ŵ = 0.13 mm1
c = 16.536 (4) ÅT = 93 K
β = 108.401 (3)°Prism, colorless
V = 1038.5 (4) Å30.40 × 0.23 × 0.23 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
1967 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 1816
6542 measured reflectionsk = 55
2355 independent reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.018P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
2355 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H9NO6V = 1038.5 (4) Å3
Mr = 239.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.249 (3) ŵ = 0.13 mm1
b = 4.6450 (9) ÅT = 93 K
c = 16.536 (4) Å0.40 × 0.23 × 0.23 mm
β = 108.401 (3)°
Data collection top
Rigaku SPIDER
diffractometer
1967 reflections with I > 2σ(I)
6542 measured reflectionsRint = 0.024
2355 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.54 e Å3
2355 reflectionsΔρmin = 0.21 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13780 (9)0.1168 (3)0.34968 (7)0.0298 (3)
O20.03728 (8)0.0126 (3)0.42538 (7)0.0276 (3)
O30.08919 (8)0.5402 (3)0.69486 (7)0.0264 (3)
O40.18028 (8)0.9233 (3)0.71824 (7)0.0254 (3)
O50.42632 (9)1.0386 (3)0.57257 (8)0.0295 (3)
O60.41511 (9)0.7677 (3)0.45857 (8)0.0372 (3)
N10.14799 (9)0.7034 (3)0.67837 (8)0.0204 (3)
C10.16237 (11)0.3639 (3)0.47870 (9)0.0191 (3)
C20.24472 (11)0.5011 (4)0.46934 (10)0.0212 (3)
H20.26620.45700.42190.025*
C30.29609 (11)0.7032 (4)0.52916 (10)0.0207 (3)
C40.26459 (11)0.7719 (3)0.59811 (10)0.0202 (3)
H40.29850.91140.63890.024*
C50.18231 (11)0.6311 (3)0.60566 (9)0.0186 (3)
C60.13113 (11)0.4266 (3)0.54859 (9)0.0188 (3)
H60.07590.33040.55660.023*
C70.10519 (11)0.1465 (4)0.41636 (9)0.0207 (3)
C80.08258 (14)0.0899 (5)0.28589 (11)0.0362 (5)
H8A0.01400.02170.25900.043*
H8B0.08020.27880.31290.043*
C90.13330 (17)0.1176 (6)0.22150 (14)0.0530 (6)
H9A0.13280.06860.19350.064*
H9B0.09910.26110.17890.064*
H9C0.20180.17870.24910.064*
C100.38474 (12)0.8391 (4)0.51701 (10)0.0242 (4)
H5O0.4809 (18)1.103 (5)0.5597 (14)0.064 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (6)0.0351 (7)0.0270 (6)0.0129 (6)0.0161 (5)0.0098 (5)
O20.0262 (6)0.0316 (7)0.0261 (6)0.0117 (5)0.0098 (5)0.0031 (5)
O30.0269 (6)0.0273 (7)0.0288 (6)0.0054 (5)0.0143 (5)0.0005 (5)
O40.0235 (6)0.0245 (6)0.0282 (6)0.0031 (5)0.0080 (5)0.0077 (5)
O50.0227 (6)0.0336 (7)0.0357 (7)0.0122 (5)0.0140 (5)0.0083 (6)
O60.0312 (7)0.0485 (9)0.0394 (7)0.0200 (6)0.0218 (6)0.0161 (6)
N10.0171 (6)0.0220 (7)0.0220 (6)0.0000 (5)0.0057 (5)0.0014 (6)
C10.0181 (7)0.0184 (8)0.0202 (7)0.0002 (6)0.0052 (6)0.0026 (6)
C20.0193 (7)0.0234 (9)0.0219 (7)0.0006 (6)0.0079 (6)0.0019 (7)
C30.0158 (7)0.0212 (8)0.0248 (7)0.0020 (6)0.0060 (6)0.0030 (7)
C40.0171 (7)0.0189 (8)0.0229 (7)0.0010 (6)0.0040 (6)0.0014 (6)
C50.0176 (7)0.0194 (8)0.0191 (7)0.0018 (6)0.0062 (6)0.0032 (6)
C60.0155 (7)0.0188 (8)0.0219 (7)0.0003 (6)0.0056 (6)0.0051 (6)
C70.0200 (7)0.0217 (9)0.0209 (7)0.0010 (6)0.0074 (6)0.0024 (6)
C80.0397 (10)0.0404 (12)0.0311 (9)0.0145 (9)0.0147 (8)0.0134 (8)
C90.0542 (14)0.0675 (17)0.0422 (12)0.0140 (12)0.0224 (10)0.0208 (11)
C100.0197 (8)0.0254 (9)0.0272 (8)0.0044 (7)0.0070 (6)0.0007 (7)
Geometric parameters (Å, º) top
O1—C71.3320 (19)C2—H20.9500
O1—C81.460 (2)C3—C41.388 (2)
O2—C71.1986 (19)C3—C101.481 (2)
O3—N11.2230 (17)C4—C51.382 (2)
O4—N11.2242 (17)C4—H40.9500
O5—C101.308 (2)C5—C61.375 (2)
O5—H5O0.92 (3)C6—H60.9500
O6—C101.223 (2)C8—C91.469 (3)
N1—C51.4726 (19)C8—H8A0.9900
C1—C21.386 (2)C8—H8B0.9900
C1—C61.394 (2)C9—H9A0.9800
C1—C71.488 (2)C9—H9B0.9800
C2—C31.392 (2)C9—H9C0.9800
C7—O1—C8114.65 (13)C5—C6—H6120.8
C10—O5—H5O107.3 (15)C1—C6—H6120.8
O3—N1—O4124.39 (13)O2—C7—O1123.74 (15)
O3—N1—C5117.92 (13)O2—C7—C1123.56 (14)
O4—N1—C5117.69 (13)O1—C7—C1112.70 (13)
C2—C1—C6119.97 (14)O1—C8—C9107.75 (16)
C2—C1—C7122.15 (14)O1—C8—H8A110.2
C6—C1—C7117.88 (14)C9—C8—H8A110.2
C1—C2—C3120.29 (14)O1—C8—H8B110.2
C1—C2—H2119.9C9—C8—H8B110.2
C3—C2—H2119.9H8A—C8—H8B108.5
C4—C3—C2120.32 (14)C8—C9—H9A109.5
C4—C3—C10121.61 (14)C8—C9—H9B109.5
C2—C3—C10118.07 (14)H9A—C9—H9B109.5
C5—C4—C3117.97 (14)C8—C9—H9C109.5
C5—C4—H4121.0H9A—C9—H9C109.5
C3—C4—H4121.0H9B—C9—H9C109.5
C6—C5—C4123.11 (14)O6—C10—O5123.54 (15)
C6—C5—N1118.49 (13)O6—C10—C3121.42 (15)
C4—C5—N1118.40 (14)O5—C10—C3115.04 (14)
C5—C6—C1118.31 (14)
C6—C1—C2—C30.5 (2)C2—C1—C6—C51.7 (2)
C7—C1—C2—C3179.98 (14)C7—C1—C6—C5178.76 (13)
C1—C2—C3—C40.8 (2)C8—O1—C7—O21.3 (2)
C1—C2—C3—C10178.79 (14)C8—O1—C7—C1178.77 (14)
C2—C3—C4—C50.9 (2)C2—C1—C7—O2175.54 (15)
C10—C3—C4—C5178.73 (14)C6—C1—C7—O24.0 (2)
C3—C4—C5—C60.4 (2)C2—C1—C7—O14.3 (2)
C3—C4—C5—N1179.71 (13)C6—C1—C7—O1176.11 (14)
O3—N1—C5—C614.8 (2)C7—O1—C8—C9174.64 (17)
O4—N1—C5—C6165.20 (13)C4—C3—C10—O6176.32 (16)
O3—N1—C5—C4165.12 (14)C2—C3—C10—O63.3 (2)
O4—N1—C5—C414.9 (2)C4—C3—C10—O54.1 (2)
C4—C5—C6—C11.7 (2)C2—C3—C10—O5176.29 (14)
N1—C5—C6—C1178.44 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O6i0.92 (3)1.71 (3)2.630 (2)176.7 (17)
C6—H6···O2ii0.952.353.280 (2)165
C9—H9A···O6iii0.982.563.354 (3)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9NO6
Mr239.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)14.249 (3), 4.6450 (9), 16.536 (4)
β (°) 108.401 (3)
V3)1038.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.23 × 0.23
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6542, 2355, 1967
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.087, 0.99
No. of reflections2355
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.21

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O6i0.92 (3)1.71 (3)2.630 (2)176.7 (17)
C6—H6···O2ii0.95002.35003.280 (2)165.00
C9—H9A···O6iii0.98002.56003.354 (3)138.00
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

References

First citationMorin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol. 35, 1215–1220.  CAS PubMed Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. B. & Rathore, H. G. S. (1980). Indian Drug. Pharm. Ind. 15, 35–38.  CAS Google Scholar
First citationStacul, F. (2001). Eur. Radiol. 11, 690–697.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZou, P., Xie, M.-H., Luo, S.-N., Liu, Y.-L. & Shen, Y.-J. (2009). Acta Cryst. E65, o335.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds