metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ-benzene-1,2,4,5-tetra­carboxyl­ato)tetra­silver(I)]

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Faculty of Science, University of Ankara, Ankara, Turkey, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 14 February 2009; accepted 22 April 2009; online 30 April 2009)

In the centrosymmetric title compound, [Ag4(C10H2O8)]n, the benzene ring has irregular bond lengths but remains planar (r.m.s. deviation 0.0002 Å). The Ag—O bond lengths are in the range 2.153 (3)–2.615 (4) Å. The carboxyl­ate groups are oriented at dihedral angles of 26.4 (5) and 74.9 (4)° to the benzene ring. The coordination behaviour of each carboxyl­ate O atom is different: in one carboxylate, the O atoms are coordinated to a single and two Ag atoms; in the other carboxylate, the O atoms are coordinated to two and three Ag atoms. Non-classical inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure. The title compound forms a three-dimensional polymeric network due to the coordination of the Ag atoms.

Related literature

For related structures, see: Jaber et al. (1997[Jaber, F., Charbonnier, F. & Faure, R. (1997). J. Chem. Crystallogr. 27, 397-400.]); Tahir et al. (1996[Tahir, M. N., Ülkü, D. & Muvsumov, E. M. (1996). Acta Cryst. C52, 593-595.]); Ülkü et al. (1996[Ülkü, D., Tahir, M. N. & Movsumov, E. M. (1996). Acta Cryst. C52, 2678-2680.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag4(C10H2O8)]

  • Mr = 340.80

  • Monoclinic, P 21 /c

  • a = 8.328 (1) Å

  • b = 6.317 (1) Å

  • c = 10.945 (2) Å

  • β = 94.36 (2)°

  • V = 574.13 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.76 mm−1

  • T = 296 K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.448, Tmax = 0.578

  • 1680 measured reflections

  • 1308 independent reflections

  • 1268 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections frequency: 120 min intensity decay: 0.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.089

  • S = 1.01

  • 1308 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.5400 3.422 (6) 158
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The crystal structures of poly[bis(p–nitrosalicylato–O:O')disilver(I)] (Tahir et al., 1996) and poly[bis(3,5–dinitrobenzoato–O1:O2) disilver(I)–O2:Ag;Ag':O2'] (Ülkü et al., 1996) have been reported. In continuation to the interest relating to the chemistry of silver coordination with carboxylates, the title compound (I), (Fig. 1) was synthesized.

Crystal structure of silver(I) with 1,2,4,5–benzenetetracarboxylic acid (II) (Jaber et al., 1997) has also been reported. The present complex (I) has been prepared by different method with same ligand as in (II). Due to the change in reaction mechanism, the coordination of O atoms of all carboxylates with Ag atoms has been affected very much. In this centrosymmetric complex, the C–O bond lengths of the carboxylato–groups vary in the range of 1.224 (3) to 1.298 (5) Å. In the benzene ring, the bond lengths of opposite sides are equal having values of 1.359 (6), 1.368 (7) and 1.414 (7) Å. The largest bond is in between the C atoms bearing carboxylate–groups. Although the bond lengths in benzene ring are irregular but it remains planar. In (I), the metallic bond is of 3.0140 (8) Å. The carboxylato–group (O1/C4/O2) makes a dihedral angle of 26.37 (51)° with the benzene ring, while the group (O3/C5/O4) is oriented at 74.90 (37)°. Non–classical intermolecular C2—H2···O3 hydrogen bond was found in the molecular structure. The crystal structure of title compound is stabilized through three dimensional polymeric network.

Related literature top

For related structures, see: Jaber et al. (1997); Tahir et al. (1996); Ülkü et al. (1996).

Experimental top

To the aqueous solution of sodium 1,2,4,5–benzenetetracarboxylate, freshly prepared solution of AgNO3 was added dropwise with constant stirring until the color was changed. The product was filtered and the filtrate was kept in darkness for the crystallization by slow evaporation. Needle like crystals were obtained after 72 h.

Refinement top

The H–atom was found in difference map but positioned geometrically due to the presence of heavy atoms, C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) and constrained to ride on the parent atom.

The maximum electron density peak appears at the fractional coordinates 0.1821 0.4015 0.7121 and is at a distance of 0.75 Å from Ag1.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of part of polimeric structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atom is presented as a small sphere of arbitrary radius. The symmetry codes in labeling are i = -x+1, -y+1, -z+1; ii = -x, -y+1, -z+1; iii = x, -y+1/2, z-1/2; iv = x, -y+3/2, z-1/2; v = -x, y+1/2, -z+1/2; vi = x, -y+1/2, z+1/2; vii = -x, y-1/2, -z+1/2; viii = x, -y+3/2, z+1/2.
Poly[(µ-benzene-1,2,4,5-tetracarboxylato)tetrasilver(I)] top
Crystal data top
[Ag4(C10H2O8)]F(000) = 628
Mr = 340.80Dx = 3.943 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.328 (1) Åθ = 11.7–21.0°
b = 6.317 (1) ŵ = 6.76 mm1
c = 10.945 (2) ÅT = 296 K
β = 94.36 (2)°Needle, pale yellow
V = 574.13 (16) Å30.30 × 0.10 × 0.08 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
ω/2θ scansθmax = 28.2°, θmin = 3.7°
Absorption correction: ψ scan
(MolEN; Fair, 1990)
h = 010
Tmin = 0.448, Tmax = 0.578k = 08
1680 measured reflectionsl = 1414
1308 independent reflections3 standard reflections every 120 min
1268 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: Patterson
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0599P)2 + 3.6455P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1308 reflectionsΔρmax = 1.20 e Å3
101 parametersΔρmin = 0.79 e Å3
0 restraints
Crystal data top
[Ag4(C10H2O8)]V = 574.13 (16) Å3
Mr = 340.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.328 (1) ŵ = 6.76 mm1
b = 6.317 (1) ÅT = 296 K
c = 10.945 (2) Å0.30 × 0.10 × 0.08 mm
β = 94.36 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1268 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.012
Tmin = 0.448, Tmax = 0.5783 standard reflections every 120 min
1680 measured reflections intensity decay: 0.1%
1308 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 1.20 e Å3
1308 reflectionsΔρmin = 0.79 e Å3
101 parameters
Special details top

Experimental. The structure was solved by Patterson method using SHELX86. The whole molecule was recognized.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.s is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.09967 (6)0.44769 (6)0.70351 (4)0.0316 (2)
Ag20.15558 (4)0.16471 (6)0.44813 (3)0.0250 (2)
O10.1054 (4)0.2412 (6)0.5218 (3)0.0238 (10)
O20.1422 (4)0.3437 (6)0.3300 (3)0.0264 (10)
O30.3520 (4)0.6473 (6)0.1913 (3)0.0246 (10)
O40.2066 (5)0.8108 (6)0.3346 (3)0.0273 (11)
C10.3498 (5)0.4182 (8)0.4710 (4)0.0169 (11)
C20.4363 (6)0.3358 (7)0.5701 (4)0.0184 (12)
C30.4135 (5)0.5821 (8)0.4012 (4)0.0167 (11)
C40.1874 (5)0.3273 (7)0.4386 (4)0.0191 (12)
C50.3167 (5)0.6850 (8)0.2996 (4)0.0186 (12)
H20.395170.228060.616430.0221*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0447 (3)0.0225 (3)0.0247 (3)0.0009 (2)0.0155 (2)0.0012 (1)
Ag20.0254 (3)0.0282 (3)0.0195 (3)0.0047 (1)0.0097 (2)0.0011 (1)
O10.0201 (16)0.0262 (18)0.0240 (17)0.0079 (13)0.0045 (13)0.0005 (14)
O20.0254 (18)0.0292 (19)0.0221 (17)0.0027 (14)0.0152 (14)0.0006 (14)
O30.0222 (17)0.035 (2)0.0156 (16)0.0058 (14)0.0048 (13)0.0024 (14)
O40.0291 (19)0.033 (2)0.0187 (16)0.0134 (16)0.0057 (14)0.0017 (14)
C10.0131 (18)0.020 (2)0.0164 (19)0.0001 (16)0.0070 (15)0.0001 (16)
C20.017 (2)0.020 (2)0.017 (2)0.0003 (16)0.0064 (16)0.0033 (16)
C30.0150 (19)0.021 (2)0.0130 (18)0.0022 (16)0.0058 (14)0.0001 (16)
C40.016 (2)0.016 (2)0.024 (2)0.0017 (16)0.0059 (17)0.0050 (16)
C50.015 (2)0.022 (2)0.018 (2)0.0005 (16)0.0046 (16)0.0013 (16)
Geometric parameters (Å, º) top
Ag1—O12.382 (3)O2—C41.224 (5)
Ag1—Ag2i3.0140 (8)O3—C51.265 (5)
Ag1—O2i2.412 (4)O4—C51.293 (6)
Ag1—O2ii2.314 (4)C1—C21.359 (6)
Ag1—O4iii2.233 (4)C1—C31.414 (7)
Ag2—O12.311 (3)C1—C41.487 (6)
Ag2—O3iv2.153 (3)C2—C3vi1.368 (7)
Ag2—O1v2.615 (4)C3—C51.474 (6)
Ag2—O4i2.452 (3)C2—H20.9300
O1—C41.298 (5)
Ag1···C23.334 (5)O1···O4i3.154 (5)
Ag1···C4i3.097 (4)O2···C52.635 (6)
Ag1···Ag1vii3.7449 (9)O2···O33.072 (5)
Ag1···Ag1viii3.7449 (9)O2···O42.999 (5)
Ag1···Ag2viii4.0452 (9)O2···Ag2xii3.666 (4)
Ag1···O1viii4.022 (4)O2···Ag2i3.939 (4)
Ag1···O1i3.495 (4)O3···O23.072 (5)
Ag1···O3i4.061 (3)O3···Ag1i4.061 (3)
Ag1···O3iii3.320 (4)O4···C43.268 (6)
Ag1···C5i3.565 (4)O4···Ag2xiii4.026 (4)
Ag1···Ag2ii3.6134 (9)O4···O22.999 (5)
Ag1···C5iii3.077 (5)O4···Ag1i3.031 (4)
Ag2···O1i3.788 (4)O4···O1i3.155 (5)
Ag2···O4ix4.026 (4)O1···H22.5500
Ag2···C2x3.898 (5)O3···H2xi2.5400
Ag2···Ag1vii4.0452 (9)C2···Ag13.334 (5)
Ag2···C2i3.923 (5)C2···Ag2xiv3.898 (5)
Ag2···C1i3.250 (5)C2···Ag2v3.928 (5)
Ag2···C2v3.928 (5)C2···Ag2i3.923 (5)
Ag2···Ag1xi3.6134 (9)C4···O43.268 (6)
Ag2···C4i3.458 (4)C5···O22.635 (6)
Ag1···H23.0400C5···Ag1i3.565 (4)
Ag2···H2v3.2300H2···Ag13.0400
O1···O22.240 (5)H2···O12.5500
O1···Ag2i3.788 (4)H2···Ag2v3.2300
O1···Ag1vii4.022 (4)H2···O3ii2.5400
O1···Ag1i3.496 (4)
Ag2i—Ag1—O188.36 (9)Ag2—O1—Ag2v88.62 (12)
O1—Ag1—O2i103.99 (12)Ag2v—O1—C4114.3 (3)
O1—Ag1—O2ii92.98 (12)Ag1i—O2—C4112.7 (3)
O1—Ag1—O4iii151.46 (13)Ag1xi—O2—C4122.4 (3)
Ag2i—Ag1—O2i68.57 (9)Ag1i—O2—Ag1xi104.81 (13)
Ag2i—Ag1—O2ii162.28 (9)Ag2xii—O3—C5115.9 (3)
Ag2i—Ag1—O4iii74.22 (9)Ag2i—O4—C5120.3 (3)
O2i—Ag1—O2ii127.86 (12)Ag1xv—O4—C5119.1 (3)
O2i—Ag1—O4iii90.69 (14)Ag1xv—O4—Ag2i119.34 (17)
O2ii—Ag1—O4iii97.10 (13)C2—C1—C3120.9 (4)
O1—Ag2—O3iv154.36 (13)C2—C1—C4117.4 (4)
O1—Ag2—O1v91.37 (12)C3—C1—C4121.7 (4)
Ag1i—Ag2—O180.89 (9)C1—C2—C3vi117.2 (4)
O1—Ag2—O4i82.89 (13)C1—C3—C5121.6 (4)
O1v—Ag2—O3iv98.33 (13)C1—C3—C2vi121.8 (4)
Ag1i—Ag2—O3iv78.00 (10)C2vi—C3—C5116.4 (4)
O3iv—Ag2—O4i120.81 (13)O1—C4—O2125.3 (4)
Ag1i—Ag2—O1v146.75 (8)O1—C4—C1120.8 (4)
O1v—Ag2—O4i88.69 (12)O2—C4—C1114.0 (4)
Ag1i—Ag2—O4i121.88 (9)O3—C5—O4127.9 (4)
Ag1—O1—Ag2109.14 (14)O3—C5—C3118.1 (4)
Ag1—O1—C4113.7 (3)O4—C5—C3114.0 (4)
Ag1—O1—Ag2v116.43 (13)C1—C2—H2121.00
Ag2—O1—C4111.9 (3)C3vi—C2—H2121.00
Ag2i—Ag1—O1—Ag2100.23 (13)O1—Ag2—O1v—C4v113.6 (3)
Ag2i—Ag1—O1—C425.5 (3)O1—Ag2—O4i—C5i125.7 (4)
Ag2i—Ag1—O1—Ag2v161.49 (13)Ag1—O1—C4—O2132.9 (4)
O2i—Ag1—O1—Ag232.80 (17)Ag1—O1—C4—C146.7 (5)
O2i—Ag1—O1—C492.9 (3)Ag2—O1—C4—O28.7 (6)
O2i—Ag1—O1—Ag2v131.09 (14)Ag2—O1—C4—C1170.9 (3)
O2ii—Ag1—O1—Ag297.46 (15)Ag2v—O1—C4—O290.2 (5)
O2ii—Ag1—O1—C4136.8 (3)Ag2v—O1—C4—C190.3 (4)
O2ii—Ag1—O1—Ag2v0.82 (15)Ag1i—O2—C4—O161.0 (5)
O4iii—Ag1—O1—Ag2151.8 (2)Ag1i—O2—C4—C1118.5 (3)
O4iii—Ag1—O1—C426.0 (5)Ag1xi—O2—C4—O165.4 (6)
O4iii—Ag1—O1—Ag2v110.0 (3)Ag1xi—O2—C4—C1115.1 (4)
O1—Ag1—Ag2i—O45.35 (14)Ag2xii—O3—C5—O431.4 (7)
O1—Ag1—Ag2i—O1i70.34 (12)Ag2xii—O3—C5—C3151.0 (3)
O1—Ag1—Ag2i—O3iii124.33 (13)Ag2i—O4—C5—O3176.4 (4)
O2i—Ag1—Ag2i—O4111.08 (15)Ag2i—O4—C5—C35.9 (5)
O4iii—Ag1—Ag2i—O4151.77 (16)Ag1xv—O4—C5—O316.2 (7)
O1—Ag1—O2i—C4i21.4 (3)Ag1xv—O4—C5—C3161.5 (3)
O1—Ag1—O2ii—C4ii162.7 (3)C3—C1—C2—C3vi0.1 (7)
O1—Ag1—O4iii—C5iii17.6 (5)C4—C1—C2—C3vi179.2 (4)
O3iv—Ag2—O1—Ag1129.8 (3)C2—C1—C3—C5175.0 (4)
O3iv—Ag2—O1—C43.1 (5)C2—C1—C3—C2vi0.1 (7)
O3iv—Ag2—O1—Ag2v112.6 (3)C4—C1—C3—C55.7 (7)
O1v—Ag2—O1—Ag1117.55 (14)C4—C1—C3—C2vi179.2 (4)
O1v—Ag2—O1—C4115.8 (3)C2—C1—C4—O127.0 (6)
O1v—Ag2—O1—Ag2v0.03 (10)C2—C1—C4—O2153.5 (4)
Ag1i—Ag2—O1—Ag194.95 (13)C3—C1—C4—O1153.8 (4)
Ag1i—Ag2—O1—C431.8 (3)C3—C1—C4—O225.8 (6)
Ag1i—Ag2—O1—Ag2v147.47 (8)C1—C2—C3vi—C1vi0.1 (7)
O4i—Ag2—O1—Ag129.04 (15)C1—C2—C3vi—C5vi175.3 (4)
O4i—Ag2—O1—C4155.7 (3)C1—C3—C5—O3109.0 (5)
O4i—Ag2—O1—Ag2v88.54 (12)C1—C3—C5—O473.0 (6)
O1—Ag2—O3iv—C5iv8.6 (6)C2vi—C3—C5—O375.6 (6)
O1—Ag2—O1v—Ag1v110.74 (15)C2vi—C3—C5—O4102.3 (5)
O1—Ag2—O1v—Ag2v0.03 (11)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x, y1/2, z+3/2; (viii) x, y+1/2, z+3/2; (ix) x, y1, z; (x) x1, y, z; (xi) x, y+1/2, z1/2; (xii) x, y+1/2, z+1/2; (xiii) x, y+1, z; (xiv) x+1, y, z; (xv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3ii0.93002.54003.422 (6)158.00
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag4(C10H2O8)]
Mr340.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.328 (1), 6.317 (1), 10.945 (2)
β (°) 94.36 (2)
V3)574.13 (16)
Z4
Radiation typeMo Kα
µ (mm1)6.76
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.448, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
1680, 1308, 1268
Rint0.012
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.089, 1.01
No. of reflections1308
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.79

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1993), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.93002.54003.422 (6)158.00
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationEnraf–Nonius (1993). CAD–4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJaber, F., Charbonnier, F. & Faure, R. (1997). J. Chem. Crystallogr. 27, 397–400.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D. & Muvsumov, E. M. (1996). Acta Cryst. C52, 593–595.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÜlkü, D., Tahir, M. N. & Movsumov, E. M. (1996). Acta Cryst. C52, 2678–2680.  CSD CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds