organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1032

(E)-4-{2-[(4-Chloro­phen­yl)imino­meth­yl]phen­­oxy}phthalo­nitrile

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: gokhana@omu.edu.tr

(Received 17 March 2009; accepted 31 March 2009; online 10 April 2009)

In the title compound, C21H12ClN3O, the phenoxy ring makes dihedral angles of 51.42 (5) and 65.01 (6)°, respectively, with the chlorophenyl and phthalonitrile rings. In the crystal structure, the mol­ecules are inter­linked through weak C—H⋯N and C—H⋯π contacts, and ππ stacking inter­actions via crystallographic inversion centres form a three-dimensional network. The distance between the centroids of the phthalonitrile rings is 3.9104 (11)Å, with a slippage between the rings of 1.626 Å and a perpendicular distance between the rings of 3.556 Å.

Related literature

For the structure of dicyano­benzene, see: Janczak & Kubiak (1995[Janczak, J. & Kubiak, R. (1995). Acta Cryst. C51, 1399-1401.]). For the structure of 4-(2-formyl­phen­oxy)phthalonitrile and historical background to phthalocyanines and subphthalocyanines, see: Kartal et al. (2006[Kartal, A., Ocak Ískeleli, N., Albayrak, C., Ağar, E. & Erdönmez, A. (2006). Acta Cryst. E62, o548-o549.]).

[Scheme 1]

Experimental

Crystal data
  • C21H12ClN3O

  • Mr = 357.79

  • Triclinic, [P \overline 1]

  • a = 8.8342 (9) Å

  • b = 10.2301 (8) Å

  • c = 11.2401 (9) Å

  • α = 76.473 (6)°

  • β = 84.912 (7)°

  • γ = 64.419 (6)°

  • V = 890.74 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.78 × 0.66 × 0.51 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.870, Tmax = 0.904

  • 8944 measured reflections

  • 3503 independent reflections

  • 2825 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.04

  • 3503 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.60 3.521 (3) 172
C2—H2⋯Cg3ii 0.93 2.89 3.7044 (18) 148
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z. Cg3 is the centroid of the chloro­phenyl ring C16–C21.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally and non- peripherally substituted phthalocyanines and subphthalocyanines. In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread application in catalysis, in optical recording, as photoconductive materials, in photodynamic therapy and as chemical sensors (Kartal et al. 2006 with literature cited therein).

The geometry of the phthalonitrile group in the title compound (Fig. 1), agrees with that of previously reported structures (Janczak & Kubiak, 1995; Kartal et al., 2006). The values of the two C—O bond lengths are consistent with those found in a similar compound (Kartal et al., 2006). Rings A (atoms C16 - C21) and B(C9 - C14) have a dihedral angle of 51.42 (5)°. The molecule is not planar, the dihedral angle between the phthalonitrile moiety and the ring B(C19 - C14) being 65.01 (6)°.

The unit cell of the structure of (I) (Fig. 2) shows an intermolecular ππ contact between the two symmetry related phthalonitrile rings of neighbouring molecules. The centre of gravity Cg1 of the ring C1–C6 has a perpendicular distance to Cg1i of 3.556Å [symmetry code (i): 1 - x, 1 - y, 1 - z]. The distance between the ring centroids is 3.9104 (11) Å, with a slippage between the rings of 1.626 Å. Furthermore, the molecules are linked through weak intermolecular C—H···N contacts to form chains along the a axis (Fig. 2). These chains are connected via inversion related ππ interactions given above, and together with C—H···π contacts (Table 1) a three-dimensional network is formed. Cg3 is the centroid of the chlorophenyl ring C16 - C21.

Related literature top

For the structure of dicyanobenzene, see: Janczak & Kubiak (1995). For the structure of 4-(2-formylphenoxy)phthalonitrile and historical background to phthalocyanines and subphthalocyanines, see: Kartal et al. (2006). Cg3 is the centroid of the chlorophenyl ring C16–C21.

Experimental top

To a solution of Salicylaldehyde (0.5 g, 4.09 mmol) in DMF was added potasium carbonato (1.12 g, 8.18 mmol). The mixture was stirred for 30 min under N2. 4-Nitrophtalonitrile (0.71 g, 4.09 mmol) solution in DMF was added. The mixture was stirred for 48 h at 323 K under N2 and poured into ice-water (150 g). The product 2-(3,4-Dicyanophenoxy) benzaldehyde was filtered off and washed with water. The title compound (I) was prepared by reflux a mixture of a solution containing 2-(3,4-Dicyanophenoxy) benzaldehyde (0.5 g 2.016 mmol) in 20 ml e thanol and a solution containing 2-Chloroaniline (0.257 g 2.016 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of the title compound were obtained from ethylalcohol by slow evaporation (yield % 51; m.p.409–411 K).

Refinement top

The H atom bonded to C15 was refined freely. All other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal packing of (I) viewed down the b axis. The partial stacking between the phthalonitrile rings in the centre of the unit cell is shown, and the weak C6—H6···N1i hydrogen bonding contacts (Table 1) are indicated by dashed lines.
(E)-4-{2-[(4-Chlorophenyl)iminomethyl]phenoxy}phthalonitrile top
Crystal data top
C21H12ClN3OZ = 2
Mr = 357.79F(000) = 368
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8342 (9) ÅCell parameters from 6275 reflections
b = 10.2301 (8) Åθ = 1.9–28.1°
c = 11.2401 (9) ŵ = 0.23 mm1
α = 76.473 (6)°T = 296 K
β = 84.912 (7)°Block, colorless
γ = 64.419 (6)°0.78 × 0.66 × 0.51 mm
V = 890.74 (13) Å3
Data collection top
Stoe IPDS-II
diffractometer
3503 independent reflections
Radiation source: fine-focus sealed tube2825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.870, Tmax = 0.904l = 1313
8944 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1064P]
where P = (Fo2 + 2Fc2)/3
3503 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C21H12ClN3Oγ = 64.419 (6)°
Mr = 357.79V = 890.74 (13) Å3
Triclinic, P1Z = 2
a = 8.8342 (9) ÅMo Kα radiation
b = 10.2301 (8) ŵ = 0.23 mm1
c = 11.2401 (9) ÅT = 296 K
α = 76.473 (6)°0.78 × 0.66 × 0.51 mm
β = 84.912 (7)°
Data collection top
Stoe IPDS-II
diffractometer
3503 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2825 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.904Rint = 0.044
8944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
3503 reflectionsΔρmin = 0.40 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51280 (17)0.26143 (17)0.40778 (14)0.0464 (3)
C20.66702 (18)0.26554 (19)0.40930 (14)0.0505 (4)
H20.73790.24950.34270.061*
C30.71421 (18)0.29367 (18)0.51070 (13)0.0475 (4)
C40.6080 (2)0.31856 (18)0.61105 (14)0.0497 (4)
C50.4538 (2)0.3153 (2)0.60666 (16)0.0602 (4)
H50.38170.33240.67250.072*
C60.4063 (2)0.2869 (2)0.50597 (16)0.0560 (4)
H60.30240.28470.50390.067*
C70.8749 (2)0.2967 (2)0.51519 (16)0.0661 (5)
C80.6607 (3)0.3483 (2)0.71432 (17)0.0696 (5)
C90.55995 (19)0.14409 (18)0.23769 (15)0.0497 (4)
C100.6889 (2)0.0109 (2)0.28960 (17)0.0606 (4)
H100.71200.01350.37310.073*
C110.7829 (2)0.0855 (2)0.21644 (19)0.0678 (5)
H110.87100.17510.25050.081*
C120.7476 (2)0.0504 (2)0.09301 (19)0.0678 (5)
H120.81100.11660.04420.081*
C130.6185 (2)0.0823 (2)0.04203 (16)0.0583 (4)
H130.59520.10510.04130.070*
C140.52227 (18)0.18339 (18)0.11312 (15)0.0490 (4)
C150.38617 (18)0.32668 (19)0.05899 (15)0.0486 (4)
C160.20883 (18)0.49755 (18)0.09784 (13)0.0474 (4)
C170.0858 (2)0.5086 (2)0.17321 (15)0.0550 (4)
H170.08710.42290.18920.066*
C180.0379 (2)0.6449 (2)0.22445 (15)0.0590 (4)
H180.12100.65190.27420.071*
C190.0371 (2)0.7704 (2)0.20116 (16)0.0576 (4)
C200.0837 (2)0.7630 (2)0.12803 (16)0.0584 (4)
H200.08270.84920.11340.070*
C210.2069 (2)0.62566 (19)0.07630 (14)0.0529 (4)
H210.28950.61940.02650.063*
N11.0006 (2)0.2993 (3)0.52178 (18)0.1025 (8)
N20.7057 (3)0.3728 (3)0.79419 (19)0.1125 (8)
N30.33454 (16)0.35400 (16)0.04982 (12)0.0533 (3)
O10.45285 (13)0.24132 (14)0.30878 (11)0.0594 (3)
Cl10.19019 (7)0.94362 (6)0.26930 (6)0.0948 (2)
H150.346 (2)0.3985 (19)0.1112 (15)0.048 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (7)0.0486 (8)0.0424 (8)0.0151 (6)0.0058 (6)0.0067 (6)
C20.0435 (7)0.0656 (10)0.0384 (8)0.0198 (7)0.0002 (6)0.0099 (7)
C30.0451 (7)0.0522 (9)0.0407 (8)0.0187 (6)0.0062 (6)0.0033 (6)
C40.0576 (8)0.0479 (8)0.0400 (8)0.0190 (7)0.0022 (6)0.0088 (6)
C50.0592 (9)0.0692 (11)0.0505 (10)0.0254 (8)0.0144 (7)0.0188 (8)
C60.0461 (8)0.0651 (10)0.0565 (10)0.0247 (7)0.0036 (7)0.0116 (8)
C70.0583 (10)0.0966 (15)0.0460 (9)0.0378 (10)0.0084 (7)0.0072 (9)
C80.0874 (13)0.0719 (12)0.0501 (10)0.0316 (10)0.0007 (9)0.0187 (9)
C90.0487 (8)0.0539 (9)0.0496 (9)0.0237 (7)0.0056 (6)0.0109 (7)
C100.0683 (10)0.0553 (10)0.0557 (10)0.0246 (8)0.0160 (8)0.0046 (8)
C110.0736 (11)0.0454 (9)0.0765 (13)0.0160 (8)0.0191 (9)0.0097 (9)
C120.0722 (11)0.0550 (10)0.0739 (12)0.0190 (9)0.0057 (9)0.0229 (9)
C130.0639 (10)0.0570 (10)0.0555 (10)0.0246 (8)0.0062 (7)0.0143 (8)
C140.0488 (8)0.0511 (8)0.0500 (9)0.0244 (7)0.0059 (6)0.0077 (7)
C150.0470 (7)0.0531 (9)0.0474 (8)0.0224 (7)0.0034 (6)0.0102 (7)
C160.0469 (7)0.0539 (9)0.0399 (8)0.0203 (7)0.0010 (6)0.0099 (6)
C170.0555 (9)0.0580 (10)0.0520 (9)0.0216 (7)0.0064 (7)0.0152 (7)
C180.0483 (8)0.0714 (11)0.0515 (9)0.0208 (8)0.0065 (7)0.0094 (8)
C190.0483 (8)0.0565 (10)0.0532 (10)0.0138 (7)0.0053 (7)0.0035 (7)
C200.0651 (10)0.0535 (10)0.0574 (10)0.0268 (8)0.0075 (8)0.0131 (8)
C210.0557 (8)0.0621 (10)0.0438 (8)0.0277 (7)0.0014 (6)0.0109 (7)
N10.0731 (11)0.175 (2)0.0727 (12)0.0723 (14)0.0127 (9)0.0072 (13)
N20.160 (2)0.130 (2)0.0671 (13)0.0674 (17)0.0122 (13)0.0413 (13)
N30.0529 (7)0.0549 (8)0.0489 (7)0.0187 (6)0.0087 (6)0.0104 (6)
O10.0454 (6)0.0776 (8)0.0522 (6)0.0184 (5)0.0088 (5)0.0207 (6)
Cl10.0776 (4)0.0632 (3)0.1105 (5)0.0075 (3)0.0174 (3)0.0041 (3)
Geometric parameters (Å, º) top
C1—O11.3663 (19)C11—H110.9300
C1—C61.382 (2)C12—C131.374 (2)
C1—C21.383 (2)C12—H120.9300
C2—C31.377 (2)C13—C141.392 (2)
C2—H20.9300C13—H130.9300
C3—C41.399 (2)C14—C151.468 (2)
C3—C71.439 (2)C15—N31.269 (2)
C4—C51.383 (2)C15—H150.975 (17)
C4—C81.428 (2)C16—C211.380 (2)
C5—C61.373 (2)C16—C171.387 (2)
C5—H50.9300C16—N31.417 (2)
C6—H60.9300C17—C181.375 (2)
C7—N11.132 (2)C17—H170.9300
C8—N21.132 (3)C18—C191.373 (3)
C9—C101.379 (2)C18—H180.9300
C9—C141.392 (2)C19—C201.370 (3)
C9—O11.3958 (19)C19—Cl11.7420 (17)
C10—C111.375 (3)C20—C211.381 (2)
C10—H100.9300C20—H200.9300
C11—C121.378 (3)C21—H210.9300
O1—C1—C6116.38 (14)C11—C12—H12120.0
O1—C1—C2122.92 (14)C12—C13—C14121.04 (17)
C6—C1—C2120.58 (15)C12—C13—H13119.5
C3—C2—C1119.13 (14)C14—C13—H13119.5
C3—C2—H2120.4C9—C14—C13117.61 (14)
C1—C2—H2120.4C9—C14—C15120.99 (15)
C2—C3—C4120.84 (14)C13—C14—C15121.40 (15)
C2—C3—C7120.21 (14)N3—C15—C14121.16 (15)
C4—C3—C7118.95 (15)N3—C15—H15124.2 (10)
C5—C4—C3118.85 (15)C14—C15—H15114.5 (10)
C5—C4—C8121.86 (15)C21—C16—C17119.08 (15)
C3—C4—C8119.28 (15)C21—C16—N3123.10 (14)
C6—C5—C4120.58 (14)C17—C16—N3117.79 (15)
C6—C5—H5119.7C18—C17—C16120.62 (17)
C4—C5—H5119.7C18—C17—H17119.7
C5—C6—C1120.02 (15)C16—C17—H17119.7
C5—C6—H6120.0C19—C18—C17119.06 (16)
C1—C6—H6120.0C19—C18—H18120.5
N1—C7—C3178.2 (2)C17—C18—H18120.5
N2—C8—C4178.1 (2)C20—C19—C18121.59 (16)
C10—C9—C14121.69 (15)C20—C19—Cl1119.19 (15)
C10—C9—O1121.60 (15)C18—C19—Cl1119.20 (14)
C14—C9—O1116.54 (13)C19—C20—C21119.01 (17)
C11—C10—C9119.18 (16)C19—C20—H20120.5
C11—C10—H10120.4C21—C20—H20120.5
C9—C10—H10120.4C16—C21—C20120.64 (15)
C10—C11—C12120.48 (17)C16—C21—H21119.7
C10—C11—H11119.8C20—C21—H21119.7
C12—C11—H11119.8C15—N3—C16117.86 (14)
C13—C12—C11119.99 (17)C1—O1—C9120.84 (11)
C13—C12—H12120.0
O1—C1—C2—C3176.80 (14)C12—C13—C14—C90.9 (3)
C6—C1—C2—C30.7 (2)C12—C13—C14—C15178.86 (17)
C1—C2—C3—C40.3 (2)C9—C14—C15—N3169.24 (16)
C1—C2—C3—C7179.22 (16)C13—C14—C15—N311.0 (2)
C2—C3—C4—C50.3 (2)C21—C16—C17—C181.0 (2)
C7—C3—C4—C5179.85 (16)N3—C16—C17—C18178.84 (15)
C2—C3—C4—C8179.60 (16)C16—C17—C18—C190.8 (3)
C7—C3—C4—C80.9 (3)C17—C18—C19—C200.2 (3)
C3—C4—C5—C60.5 (3)C17—C18—C19—Cl1178.23 (13)
C8—C4—C5—C6179.76 (17)C18—C19—C20—C210.2 (3)
C4—C5—C6—C10.1 (3)Cl1—C19—C20—C21178.63 (12)
O1—C1—C6—C5176.87 (15)C17—C16—C21—C200.6 (2)
C2—C1—C6—C50.6 (3)N3—C16—C21—C20178.31 (14)
C14—C9—C10—C110.1 (3)C19—C20—C21—C160.0 (2)
O1—C9—C10—C11175.30 (17)C14—C15—N3—C16176.75 (14)
C9—C10—C11—C120.8 (3)C21—C16—N3—C1539.8 (2)
C10—C11—C12—C130.6 (3)C17—C16—N3—C15142.39 (16)
C11—C12—C13—C140.3 (3)C6—C1—O1—C9145.81 (16)
C10—C9—C14—C130.7 (3)C2—C1—O1—C938.0 (2)
O1—C9—C14—C13174.69 (14)C10—C9—O1—C138.3 (2)
C10—C9—C14—C15179.06 (15)C14—C9—O1—C1146.30 (15)
O1—C9—C14—C155.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.603.521 (3)172
C2—H2···Cg3ii0.932.893.7044 (18)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H12ClN3O
Mr357.79
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.8342 (9), 10.2301 (8), 11.2401 (9)
α, β, γ (°)76.473 (6), 84.912 (7), 64.419 (6)
V3)890.74 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.78 × 0.66 × 0.51
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.870, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
8944, 3503, 2825
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.04
No. of reflections3503
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.40

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.603.521 (3)172
C2—H2···Cg3ii0.932.893.7044 (18)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Kubiak, R. (1995). Acta Cryst. C51, 1399–1401.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKartal, A., Ocak Ískeleli, N., Albayrak, C., Ağar, E. & Erdönmez, A. (2006). Acta Cryst. E62, o548–o549.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1032
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds