organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1068

Dipyridinium 2,2′-di­thio­dinicotinate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 April 2009; accepted 10 April 2009; online 18 April 2009)

The dianion of the title salt, 2C5H6N+·C12H6N2O4S22−, lies on a special position of 2 site symmetry that relates one thio­nicotinate part to the other, and the dihedral angle between the niotinate planes is 89.2 (2)°. The pyridinium cations are hydrogen bonded to the carboxyl­ate group by way of N—H⋯O links.

Related literature

The structure is a non-merohedral twin; for the program to model twinned crystal structures, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). For 1,1′-dithio-2,2′-dinicotinic acid, see: Zhu et al. (2002[Zhu, J.-X., Zhao, Y.-J., Hong, M.-C., Sun, D.-F., Shi, Q. & Cao, R. (2002). Chem. Lett. pp. 484-485.]). For the methyl, ethyl and n-butyl esters, see: Cindrić et al. (2001[Cindrić, M., Strukan, N., Kaifež, T., Giester, G. & Kamenar, B. (2001). Z. Anorg. Allg. Chem. 627, 2604-2608.]); Toma et al. (2004[Toma, M., Sanchez, A., Castellano, E. E. & Ellena, J. (2004). Rev. Chim. (Bucharest), 55, 719-723.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H6N+·C12H6N2O4S22−

  • Mr = 466.52

  • Monoclinic, C 2/c

  • a = 7.9621 (3) Å

  • b = 12.3354 (4) Å

  • c = 21.5057 (8) Å

  • β = 95.917 (2)°

  • V = 2100.9 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 123 K

  • 0.28 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.977

  • 6726 measured reflections

  • 1855 independent reflections

  • 1496 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.269

  • S = 1.59

  • 1855 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.88 1.71 2.586 (7) 174

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The structure is a non-merohedral twin; for the program to de-twin twinned crystal structures, see: Spek (2003). For 1,1'-dithio-2,2'-dinicotinic acid, see: Zhu et al. (2002). For the methyl, ethyl and n-butyl esters, see: Cindrić et al. (2001); Toma et al. (2004).

Experimental top

The title compound was isolated as one of the by-products when 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid (0.37 g, 1 mmol) and thiocarbohydrazide (0.10 g, 1 mmol) were reacted in pyridine (10 ml) for 3 h. The product from a cool mixture was collected and recrystallized from pyridine

Refinement top

The specimen used in the diffraction measurements is a multiply-twinned crystal; twinning was evident when examined by the RLATT routine of the data collection software, with a major of about 60%. The diffraction images were integrated on the major component.

The structure initially refined to an R> index of 13%. The structure is a non-merohedral twin, as suggested by PLATON (Spek, 2003). The intensities were de-twinned by the TwinRotMat routine.

The carbon- and nitrogen-bound H-atoms were placed in calculated positions (C—H 0.95 Å, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times U(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 2(C5H6N) (C12H6N2O4S2) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dipyridinium 2,2'-dithiodinicotinate top
Crystal data top
2C5H6N+·C12H6N2O4S22F(000) = 968
Mr = 466.52Dx = 1.475 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1585 reflections
a = 7.9621 (3) Åθ = 3.1–24.0°
b = 12.3354 (4) ŵ = 0.29 mm1
c = 21.5057 (8) ÅT = 123 K
β = 95.917 (2)°Chip, light yellow
V = 2100.9 (1) Å30.28 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1855 independent reflections
Radiation source: fine-focus sealed tube1496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.923, Tmax = 0.977k = 1414
6726 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.269H-atom parameters constrained
S = 1.59 w = 1/[σ2(Fo2) + (0.1P)2 + 5P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
2C5H6N+·C12H6N2O4S22V = 2100.9 (1) Å3
Mr = 466.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.9621 (3) ŵ = 0.29 mm1
b = 12.3354 (4) ÅT = 123 K
c = 21.5057 (8) Å0.28 × 0.16 × 0.08 mm
β = 95.917 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1496 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.977Rint = 0.101
6726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0920 restraints
wR(F2) = 0.269H-atom parameters constrained
S = 1.59Δρmax = 0.47 e Å3
1855 reflectionsΔρmin = 0.57 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.5434 (2)0.61088 (12)0.29627 (7)0.0213 (5)
O10.6450 (6)0.6042 (4)0.4204 (2)0.0317 (12)
O20.5265 (6)0.6888 (4)0.4968 (2)0.0336 (12)
N10.3073 (7)0.7643 (4)0.2874 (2)0.0249 (12)
N20.7396 (7)0.5816 (4)0.5721 (3)0.0278 (13)
H20.66900.62180.54780.033*
C10.2040 (9)0.8378 (5)0.3103 (3)0.0299 (16)
H10.13000.87780.28140.036*
C20.1994 (8)0.8583 (5)0.3731 (3)0.0271 (15)
H2A0.12400.91020.38730.033*
C30.3092 (8)0.8001 (5)0.4142 (3)0.0249 (14)
H30.30910.81160.45790.030*
C40.4190 (8)0.7255 (5)0.3929 (3)0.0204 (13)
C50.4125 (8)0.7097 (5)0.3280 (3)0.0191 (13)
C60.5418 (8)0.6678 (5)0.4383 (3)0.0227 (14)
C70.7634 (9)0.5987 (6)0.6336 (3)0.0311 (16)
H70.70300.65570.65100.037*
C80.8721 (9)0.5368 (6)0.6728 (3)0.0342 (17)
H80.88620.55120.71640.041*
C90.9605 (9)0.4535 (6)0.6481 (3)0.0325 (16)
H91.03350.40810.67440.039*
C100.9398 (10)0.4379 (6)0.5841 (3)0.0329 (16)
H101.00300.38420.56510.039*
C110.8259 (9)0.5018 (5)0.5485 (3)0.0280 (15)
H110.80780.48830.50490.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (9)0.0189 (8)0.0212 (8)0.0044 (6)0.0002 (6)0.0000 (6)
O10.035 (3)0.036 (3)0.023 (2)0.016 (2)0.003 (2)0.0003 (19)
O20.038 (3)0.040 (3)0.022 (2)0.017 (2)0.002 (2)0.000 (2)
N10.023 (3)0.021 (3)0.029 (3)0.010 (2)0.003 (2)0.000 (2)
N20.025 (3)0.029 (3)0.029 (3)0.001 (2)0.003 (2)0.000 (2)
C10.029 (4)0.020 (3)0.039 (4)0.004 (3)0.003 (3)0.001 (3)
C20.023 (3)0.018 (3)0.040 (4)0.000 (3)0.004 (3)0.003 (3)
C30.027 (3)0.023 (3)0.027 (3)0.004 (3)0.009 (3)0.001 (3)
C40.019 (3)0.016 (3)0.025 (3)0.003 (2)0.003 (3)0.002 (2)
C50.020 (3)0.018 (3)0.019 (3)0.000 (2)0.003 (2)0.003 (2)
C60.024 (3)0.017 (3)0.026 (3)0.001 (3)0.001 (3)0.001 (2)
C70.027 (4)0.037 (4)0.028 (4)0.002 (3)0.003 (3)0.006 (3)
C80.024 (4)0.053 (5)0.024 (3)0.001 (3)0.005 (3)0.001 (3)
C90.021 (3)0.037 (4)0.038 (4)0.003 (3)0.005 (3)0.004 (3)
C100.034 (4)0.025 (3)0.039 (4)0.002 (3)0.002 (3)0.001 (3)
C110.028 (4)0.029 (3)0.027 (3)0.002 (3)0.002 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—C51.785 (6)C3—C41.380 (9)
S1—S1i2.038 (3)C3—H30.9500
O1—C61.226 (8)C4—C51.405 (9)
O2—C61.302 (8)C4—C61.490 (8)
N1—C51.329 (8)C7—C81.375 (10)
N1—C11.350 (8)C7—H70.9500
N2—C111.330 (9)C8—C91.383 (10)
N2—C71.333 (8)C8—H80.9500
N2—H20.8800C9—C101.384 (10)
C1—C21.376 (9)C9—H90.9500
C1—H10.9500C10—C111.372 (10)
C2—C31.380 (9)C10—H100.9500
C2—H2A0.9500C11—H110.9500
C5—S1—S1i102.7 (2)C4—C5—S1120.8 (5)
C5—N1—C1117.8 (6)O1—C6—O2124.2 (6)
C11—N2—C7117.9 (6)O1—C6—C4121.1 (6)
C11—N2—H2121.0O2—C6—C4114.7 (5)
C7—N2—H2121.0N2—C7—C8122.4 (7)
N1—C1—C2124.0 (6)N2—C7—H7118.8
N1—C1—H1118.0C8—C7—H7118.8
C2—C1—H1118.0C7—C8—C9119.4 (7)
C1—C2—C3117.0 (6)C7—C8—H8120.3
C1—C2—H2A121.5C9—C8—H8120.3
C3—C2—H2A121.5C8—C9—C10118.2 (6)
C4—C3—C2121.0 (6)C8—C9—H9120.9
C4—C3—H3119.5C10—C9—H9120.9
C2—C3—H3119.5C11—C10—C9118.6 (7)
C3—C4—C5117.6 (6)C11—C10—H10120.7
C3—C4—C6119.8 (6)C9—C10—H10120.7
C5—C4—C6122.6 (6)N2—C11—C10123.4 (6)
N1—C5—C4122.5 (6)N2—C11—H11118.3
N1—C5—S1116.7 (5)C10—C11—H11118.3
C5—N1—C1—C21.0 (10)S1i—S1—C5—C4172.6 (5)
N1—C1—C2—C30.6 (10)C3—C4—C6—O1177.2 (6)
C1—C2—C3—C40.5 (9)C5—C4—C6—O10.9 (9)
C2—C3—C4—C51.2 (9)C3—C4—C6—O24.3 (8)
C2—C3—C4—C6177.1 (6)C5—C4—C6—O2177.5 (6)
C1—N1—C5—C40.2 (9)C11—N2—C7—C80.4 (10)
C1—N1—C5—S1178.5 (5)N2—C7—C8—C90.1 (11)
C3—C4—C5—N10.9 (9)C7—C8—C9—C102.1 (11)
C6—C4—C5—N1177.3 (5)C8—C9—C10—C113.5 (10)
C3—C4—C5—S1177.4 (5)C7—N2—C11—C101.2 (10)
C6—C4—C5—S14.4 (8)C9—C10—C11—N23.2 (11)
S1i—S1—C5—N15.7 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.881.712.586 (7)174

Experimental details

Crystal data
Chemical formula2C5H6N+·C12H6N2O4S22
Mr466.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)7.9621 (3), 12.3354 (4), 21.5057 (8)
β (°) 95.917 (2)
V3)2100.9 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6726, 1855, 1496
Rint0.101
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.269, 1.59
No. of reflections1855
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.57

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.881.712.586 (7)174
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCindrić, M., Strukan, N., Kaifež, T., Giester, G. & Kamenar, B. (2001). Z. Anorg. Allg. Chem. 627, 2604–2608.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToma, M., Sanchez, A., Castellano, E. E. & Ellena, J. (2004). Rev. Chim. (Bucharest), 55, 719–723.  CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhu, J.-X., Zhao, Y.-J., Hong, M.-C., Sun, D.-F., Shi, Q. & Cao, R. (2002). Chem. Lett. pp. 484–485.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1068
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds