organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1025

2-Chloro­ethyl 2-(5-bromo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry Pukyong National University 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 27 March 2009; accepted 4 April 2009; online 10 April 2009)

In the title compound, C13H12BrClO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. There is a mean deviation of 0.016 (4) Å from the least-squares plane defined by the nine constituent benzofuran atoms. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.689 (7) Å]and by a weak C—H⋯π interaction between an H atom of the methylene group bonded to the carboxylate O atom and the benzene ring of an adjacent molecule. In addition, the crystal structure exhibits weak non-classical inter­molecular C—H⋯O hydrogen bonds. The chloro­ethyl group is disordered over two positions, with refined site-occupancy factors of 0.767 (6) and 0.233 (6).

Related literature

For the crystal structures of similar alkyl 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12BrClO4S

  • Mr = 379.65

  • Triclinic, [P \overline 1]

  • a = 8.495 (1) Å

  • b = 9.882 (2) Å

  • c = 10.277 (2) Å

  • α = 71.095 (3)°

  • β = 80.331 (3)°

  • γ = 65.012 (2)°

  • V = 739.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.475, Tmax = 0.736

  • 5479 measured reflections

  • 2575 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.133

  • S = 1.07

  • 2575 reflections

  • 192 parameters

  • 57 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11A—H11BCgi 0.97 3.07 3.779 (7) 131
C3—H3⋯O4ii 0.93 2.60 3.483 (7) 159
C5—H5⋯O3iii 0.93 2.58 3.423 (7) 150
C9—H9A⋯O1iv 0.97 2.60 3.545 (6) 165
C9—H9B⋯O4v 0.97 2.34 3.294 (7) 170
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z; (v) -x, -y+1, -z+1. Cg is the centroid of the C2–C7 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of alkyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, viz. isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008b). Here we report the crystal structure of the title compound, 2-chloroethyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.016 (4) Å from the least-squares plane defined by the nine constituent atoms. The chloroethyl group is disordered over two positions with site–occupancy factors of 0.767 (6) (for atoms labelled A) and 0.233 (7) (for atoms labelled B). The molecular packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene rings of neighbouring molecules, with a Cg···Cgiii distance of 3.689 (7) Å (Cg is the centroid of the C2-C7 benzene ring; symmetry codes as in Fig. 2). The crystal packing is further stabilized by an intermolecular C—H···π interaction between an H atom of the methylene group bonded to the carboxylate O atom and the benzene ring of a neighbouring molecule, with a C11—H11B···Cgi distance of 3.07 Å (Table 1 and Fig. 2; symmetry code as in Fig. 2, Cgi is the centroid of the C2···C7 benzene ring). Additionally, the crystal structure exhibits weak, non-classical, intermolecular C—H···O hydrogen bonds; the first between a benzene H atom and the SO unit, the second between a benzene H atom and the CO unit, the third between an H atom of the methylene group bonded to the carboxylate C atom and the furan O atom, and the fourth between an H atom of the methylene group bonded to the carboxylate C atom and the SO unit, respectively (Table 1 and Fig. 3; symmetry codes as in Fig. 3).

Related literature top

For the crystal structures of similar alkyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2008a,b). Cg is the centroid of the C2–C7 benzene ring.

Experimental top

77% 3-Chloroperoxybenzoic acid (271 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-chloroethyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (380 mg, 1.0 mmol) in dichloromethane (40 ml) at 273 K. After stirring for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 436-437 K; Rf = 0.41 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.07 (s, 3H), 3.70 (t, J = 5.48 Hz, 2H), 4.12 (s, 2H), 4.41 (t, J = 5.48 Hz, 2H), 7.41 (d, J = 8.76 Hz, 1H), 7.71 (dd, J = 8.47 Hz and J = 1.82 Hz, 1H), 8.05 (s, 1H).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms.Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The chloroethyl group is disordered over two positions, with site–occupancy factors, from refinement, of 0.767 (6) (C11A—C12A—ClA) and 0.233 (7) (C11B—C12B—ClB). Both sets of C and Cl atoms were restrained using the commands ISOR (0.01), EADP, and the C—C and C—Cl distances (A & B) were restrained to 1.46 (3) and 1.55 (3) Å, respectively, using the command DFIX. Despite this the atomic displacement parameters for the C atoms of the disordered chhloroethyl group were large, reflecting additional disorder and the room temperature data collection.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The ππ and C—H···π interactions (dotted lines) in the title compound. Cg denotes the ring centroid of the C2···C7 benzene ring. The disordered component of the chloroethyl group, part B, has been omitted for clarity as have H atoms not involved in intermolecular contacts. [Symmetry codes: (i)x, y-1, z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z; (iv) x, y+1, z.]
[Figure 3] Fig. 3. The C—H···O hydrogen bonds (dotted lines) in the title compound. The disordered component of the chloroethyl group, part B, has been omitted for clarity as have H atoms not involved in intermolecular contacts. [Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z (v) -x, -y+1, -z+1.]
2-Chloroethyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C13H12BrClO4SZ = 2
Mr = 379.65F(000) = 380
Triclinic, P1Dx = 1.705 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.495 (1) ÅCell parameters from 2253 reflections
b = 9.882 (2) Åθ = 2.7–25.7°
c = 10.277 (2) ŵ = 3.11 mm1
α = 71.095 (3)°T = 298 K
β = 80.331 (3)°Block, colorless
γ = 65.012 (2)°0.30 × 0.20 × 0.10 mm
V = 739.3 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
2575 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1111
Tmin = 0.475, Tmax = 0.736l = 1212
5479 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.133H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.054P)2 + 1.6319P]
where P = (Fo2 + 2Fc2)/3
2575 reflections(Δ/σ)max < 0.000
192 parametersΔρmax = 0.80 e Å3
57 restraintsΔρmin = 0.81 e Å3
Crystal data top
C13H12BrClO4Sγ = 65.012 (2)°
Mr = 379.65V = 739.3 (2) Å3
Triclinic, P1Z = 2
a = 8.495 (1) ÅMo Kα radiation
b = 9.882 (2) ŵ = 3.11 mm1
c = 10.277 (2) ÅT = 298 K
α = 71.095 (3)°0.30 × 0.20 × 0.10 mm
β = 80.331 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2575 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1972 reflections with I > 2σ(I)
Tmin = 0.475, Tmax = 0.736Rint = 0.027
5479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05557 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
2575 reflectionsΔρmin = 0.81 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.68390 (9)0.78885 (8)0.10766 (7)0.0571 (3)
ClA0.1810 (4)0.0480 (3)0.3580 (3)0.0928 (12)0.764 (6)
ClB0.0308 (13)0.0729 (11)0.1579 (12)0.0928 (12)0.24
S0.25778 (18)0.40156 (16)0.46589 (13)0.0391 (4)
O10.1648 (4)0.5435 (4)0.0705 (3)0.0355 (8)
O20.0404 (6)0.1375 (5)0.2446 (7)0.0824 (18)
O30.2843 (6)0.1340 (5)0.2991 (5)0.0622 (12)
O40.2572 (6)0.5265 (5)0.5185 (4)0.0537 (11)
C10.2533 (6)0.4767 (6)0.2849 (5)0.0313 (11)
C20.3429 (6)0.5699 (5)0.1946 (5)0.0287 (11)
C30.4664 (7)0.6219 (6)0.2093 (6)0.0362 (12)
H30.51260.59600.29410.043*
C40.5167 (7)0.7138 (6)0.0920 (6)0.0379 (13)
C50.4497 (7)0.7563 (6)0.0359 (6)0.0395 (13)
H50.48490.82160.11100.047*
C60.3306 (7)0.7020 (6)0.0522 (6)0.0382 (13)
H60.28600.72710.13750.046*
C70.2815 (6)0.6090 (6)0.0641 (5)0.0326 (12)
C80.1505 (7)0.4640 (6)0.2065 (5)0.0328 (11)
C90.0354 (7)0.3767 (6)0.2371 (6)0.0377 (13)
H9A0.03830.41410.15980.045*
H9B0.03920.39680.31700.045*
C100.1380 (8)0.2042 (7)0.2639 (6)0.0446 (14)
C11A0.1269 (13)0.0271 (11)0.2556 (12)0.069 (3)0.764 (6)
H11A0.20310.07980.33290.083*0.764 (6)
H11B0.19680.04220.17250.083*0.764 (6)
C12A0.004 (3)0.092 (3)0.275 (2)0.162 (6)0.764 (6)
H12A0.05700.20310.31430.195*0.764 (6)
H12B0.03320.07790.18320.195*0.764 (6)
C11B0.107 (4)0.044 (3)0.343 (4)0.069 (3)0.24
H11C0.22420.10450.31530.083*0.236 (6)
H11D0.10550.04800.43850.083*0.236 (6)
C12B0.013 (10)0.105 (10)0.324 (4)0.162 (6)0.24
H12C0.12590.05420.36480.195*0.236 (6)
H12D0.02860.21560.36960.195*0.236 (6)
C130.4757 (8)0.2580 (7)0.4793 (7)0.0566 (17)
H13A0.55530.30840.44400.085*
H13B0.49040.18850.42690.085*
H13C0.49830.20020.57400.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0555 (4)0.0544 (4)0.0722 (5)0.0345 (3)0.0077 (3)0.0112 (3)
ClA0.086 (2)0.0646 (16)0.118 (2)0.0415 (14)0.0202 (16)0.0107 (14)
ClB0.086 (2)0.0646 (16)0.118 (2)0.0415 (14)0.0202 (16)0.0107 (14)
S0.0433 (8)0.0443 (8)0.0292 (7)0.0198 (7)0.0030 (6)0.0056 (6)
O10.039 (2)0.041 (2)0.0288 (19)0.0193 (17)0.0074 (16)0.0062 (16)
O20.044 (3)0.040 (3)0.174 (6)0.012 (2)0.022 (3)0.040 (3)
O30.045 (3)0.046 (3)0.087 (3)0.014 (2)0.021 (2)0.006 (2)
O40.061 (3)0.065 (3)0.041 (2)0.022 (2)0.001 (2)0.027 (2)
C10.033 (3)0.033 (3)0.030 (3)0.013 (2)0.005 (2)0.009 (2)
C20.030 (3)0.023 (2)0.029 (3)0.005 (2)0.002 (2)0.009 (2)
C30.039 (3)0.033 (3)0.038 (3)0.012 (2)0.004 (2)0.014 (2)
C40.039 (3)0.033 (3)0.049 (3)0.017 (2)0.002 (3)0.015 (3)
C50.040 (3)0.035 (3)0.040 (3)0.015 (2)0.001 (3)0.007 (2)
C60.042 (3)0.039 (3)0.030 (3)0.014 (3)0.004 (2)0.007 (2)
C70.029 (3)0.028 (3)0.039 (3)0.007 (2)0.006 (2)0.012 (2)
C80.033 (3)0.031 (3)0.033 (3)0.012 (2)0.001 (2)0.009 (2)
C90.036 (3)0.045 (3)0.037 (3)0.020 (3)0.005 (2)0.012 (3)
C100.045 (4)0.041 (3)0.048 (4)0.016 (3)0.003 (3)0.012 (3)
C11A0.059 (4)0.062 (4)0.090 (5)0.019 (3)0.002 (4)0.032 (4)
C12A0.170 (8)0.120 (7)0.171 (9)0.051 (6)0.035 (7)0.037 (7)
C11B0.059 (4)0.062 (4)0.090 (5)0.019 (3)0.002 (4)0.032 (4)
C12B0.170 (8)0.120 (7)0.171 (9)0.051 (6)0.035 (7)0.037 (7)
C130.055 (4)0.051 (4)0.057 (4)0.010 (3)0.017 (3)0.012 (3)
Geometric parameters (Å, º) top
Br—C41.907 (5)C5—H50.9300
ClA—C12A1.559 (19)C6—C71.375 (7)
ClB—C12B1.65 (3)C6—H60.9300
S—O41.498 (4)C8—C91.494 (7)
S—C11.766 (5)C9—C101.505 (8)
S—C131.788 (6)C9—H9A0.9700
O1—C81.377 (6)C9—H9B0.9700
O1—C71.378 (6)C11A—C12A1.459 (15)
O2—C101.328 (7)C11A—H11A0.9700
O2—C11A1.448 (9)C11A—H11B0.9700
O2—C11B1.65 (2)C12A—H12A0.9700
O3—C101.190 (7)C12A—H12B0.9700
C1—C81.350 (7)C11B—C12B1.45 (2)
C1—C21.445 (7)C11B—H11C0.9700
C2—C31.395 (7)C11B—H11D0.9700
C2—C71.396 (7)C12B—H12C0.9700
C3—C41.380 (7)C12B—H12D0.9700
C3—H30.9300C13—H13A0.9600
C4—C51.385 (8)C13—H13B0.9600
C5—C61.383 (7)C13—H13C0.9600
O4—S—C1105.9 (2)C10—C9—H9B109.2
O4—S—C13106.1 (3)H9A—C9—H9B107.9
C1—S—C1398.5 (3)O3—C10—O2123.5 (5)
C8—O1—C7106.5 (4)O3—C10—C9126.4 (5)
C10—O2—C11A116.1 (6)O2—C10—C9110.0 (5)
C10—O2—C11B109.4 (13)O2—C11A—C12A108.9 (13)
C11A—O2—C11B31.3 (12)O2—C11A—H11A109.9
C8—C1—C2107.4 (4)C12A—C11A—H11A109.9
C8—C1—S123.8 (4)O2—C11A—H11B109.9
C2—C1—S128.7 (4)C12A—C11A—H11B109.9
C3—C2—C7119.1 (5)H11A—C11A—H11B108.3
C3—C2—C1136.0 (5)C11A—C12A—ClA128.4 (16)
C7—C2—C1104.9 (4)C11A—C12A—H12A105.2
C4—C3—C2116.8 (5)ClA—C12A—H12A105.2
C4—C3—H3121.6C11A—C12A—H12B105.2
C2—C3—H3121.6ClA—C12A—H12B105.2
C3—C4—C5123.3 (5)H12A—C12A—H12B105.9
C3—C4—Br118.2 (4)C12B—C11B—O2106 (4)
C5—C4—Br118.4 (4)C12B—C11B—H11C110.5
C6—C5—C4120.3 (5)O2—C11B—H11C110.5
C6—C5—H5119.9C12B—C11B—H11D110.5
C4—C5—H5119.9O2—C11B—H11D110.5
C7—C6—C5116.6 (5)H11C—C11B—H11D108.7
C7—C6—H6121.7C11B—C12B—ClB110 (3)
C5—C6—H6121.7C11B—C12B—H12C109.7
C6—C7—O1126.0 (5)ClB—C12B—H12C109.7
C6—C7—C2123.8 (5)C11B—C12B—H12D109.7
O1—C7—C2110.3 (4)ClB—C12B—H12D109.7
C1—C8—O1110.9 (4)H12C—C12B—H12D108.2
C1—C8—C9133.1 (5)S—C13—H13A109.5
O1—C8—C9115.9 (4)S—C13—H13B109.5
C8—C9—C10112.0 (4)H13A—C13—H13B109.5
C8—C9—H9A109.2S—C13—H13C109.5
C10—C9—H9A109.2H13A—C13—H13C109.5
C8—C9—H9B109.2H13B—C13—H13C109.5
O4—S—C1—C8135.7 (5)C1—C2—C7—O11.1 (5)
C13—S—C1—C8114.8 (5)C2—C1—C8—O10.5 (6)
O4—S—C1—C239.3 (5)S—C1—C8—O1175.4 (3)
C13—S—C1—C270.2 (5)C2—C1—C8—C9176.0 (5)
C8—C1—C2—C3178.3 (6)S—C1—C8—C98.1 (9)
S—C1—C2—C36.0 (9)C7—O1—C8—C10.1 (5)
C8—C1—C2—C70.9 (5)C7—O1—C8—C9177.3 (4)
S—C1—C2—C7174.7 (4)C1—C8—C9—C1071.8 (8)
C7—C2—C3—C41.7 (7)O1—C8—C9—C10104.6 (5)
C1—C2—C3—C4179.1 (5)C11A—O2—C10—O35.9 (11)
C2—C3—C4—C50.7 (8)C11B—O2—C10—O327.3 (16)
C2—C3—C4—Br179.5 (4)C11A—O2—C10—C9175.0 (7)
C3—C4—C5—C62.4 (8)C11B—O2—C10—C9151.7 (14)
Br—C4—C5—C6178.8 (4)C8—C9—C10—O321.9 (9)
C4—C5—C6—C71.5 (8)C8—C9—C10—O2159.1 (5)
C5—C6—C7—O1179.8 (5)C10—O2—C11A—C12A162.3 (11)
C5—C6—C7—C20.9 (8)C11B—O2—C11A—C12A78 (3)
C8—O1—C7—C6178.2 (5)O2—C11A—C12A—ClA36 (3)
C8—O1—C7—C20.8 (5)C10—O2—C11B—C12B176 (3)
C3—C2—C7—C62.6 (8)C11A—O2—C11B—C12B76 (4)
C1—C2—C7—C6178.0 (5)O2—C11B—C12B—ClB52 (6)
C3—C2—C7—O1178.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11B···Cgi0.973.073.779 (7)131
C3—H3···O4ii0.932.603.483 (7)159
C5—H5···O3iii0.932.583.423 (7)150
C9—H9A···O1iv0.972.603.545 (6)165
C9—H9B···O4v0.972.343.294 (7)170
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H12BrClO4S
Mr379.65
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.495 (1), 9.882 (2), 10.277 (2)
α, β, γ (°)71.095 (3), 80.331 (3), 65.012 (2)
V3)739.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.475, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
5479, 2575, 1972
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.133, 1.07
No. of reflections2575
No. of parameters192
No. of restraints57
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.81

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11B···Cgi0.973.073.779 (7)130.8
C3—H3···O4ii0.932.603.483 (7)159.0
C5—H5···O3iii0.932.583.423 (7)150.3
C9—H9A···O1iv0.972.603.545 (6)164.5
C9—H9B···O4v0.972.343.294 (7)169.8
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1025
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds